

1st Quarter Emissions Testing Report 2016

OneSteel Recycling Hexham

NATA ACCREDITATION No. 2778 (14391) Accredited for compliance with ISO/IEC 17025 This document is issued in accordance with NATA's accreditation requirements. This document may not be reproduced except in full.

1st Quarter Emissions Testing Report 2016

OneSteel Recycling Hexham

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

28-Apr-2016

Job No.: 60493017

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	1st Quarter Emissions Testing Report 2016			
Ref	60493017			
Date	28-Apr-2016			
Prepared by	Dylan Turnbull			
Reviewed by	Chad Whitburn	Approved Signatory		

authe

Revision History

Devision	Devision Data	Detelle	Authorised	
Revision	Revision Date	Details	Name/Position	Signature
0	28-Apr-2016	Report for Issue	Chad Whitburn Associate Director - Air Quality	allet

Table 6

Table of Contents

1.0	Introduction	1
2.0	Sampling Plane Requirements	3
3.0	Methodology	5
	3.1 NATA Accredited Methods	5
4.0	Sampling Location	7
	4.1 Sampling Location Summary	7
5.0	Equipment Calibration	9
6.0	Results	11
0.0	I Coulo	
Appendi	ix A	
	Field Sheets (17 pages)	Α
Appendi	ix B	
	Laboratory Results	
	(11 pages)	В
List of T	Tables	
Table 1	Criteria for Selection of Sampling Planes (AS 4323.1)	3
Table 2	AECOM NATA Endorsed Methods	5
Table 3	Sampling Location Summary	7
Table 4	Shredder Baghouse Emission Results Summary, 5 April 2016	11
Table 5	Fine Particulate (PM_{10}), Total Particulate and Hazardous Substance (Metals) Results, 5	
	April 2016	12

Hazardous Substances (Metals) Elemental Analysis Results, 5 April 2016

13

1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Bag house Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 5 April 2016 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 11003-0-M & 11003-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Leeder Consulting laboratory NATA accreditation number 14429, performed the following analysis detailed in report number M160775:
 - Hazardous Substances (Metals).

2

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a) The gas flow is basically in the same direction at all points along each sampling traverse;
- b) The gas velocity at all sampling points is greater than 3 m/s;
- c) The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d) The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e) The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f) The gas temperature at the sampling plane should preferably be above the dewpoint.

With the exception of point 'b', the sampling plane was in accordance with AS4323.1. The gas stream velocities at each sampling point were found to be 2.4 m/s. Please note that the bag house was not running at full capacity at the time of testing.

4

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1 (NSW EPA TM-1)	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2 (NSW EPA TM-15)	-15) USEPA (2000) Method 5 under approved circumstances Determination of total particulate matter isokinetic manual sampling – gravimetr method	
NSW EPA TM-2	JSEPA (2000) Method 2 or 2C or USEPA (1999) Method 2F or 2G or 2H (as appropriate) Determination of stack gas velocity ar volumetric flow rate (type s pitot tube)	
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	PA OM-5 USEPA (1997) Method 201 or 201A (as appropriate) Determination of PM ₁₀ emissions	
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

Table 2 AECOM NATA Endorsed Methods

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

6

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 5 April 2016.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes ²
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes ²

¹ AS 4323.1 Section 4.1

² The sampling location was ideal in terms of flow disturbances, but did not comply with AS 4323.1 point b) as the corrected velocity of the gas at all sampling points was found to be 2.4 m/s (minimum 3m/s).

D = Diameters

8

5.0 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

6.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 5 April 2016

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m ³)	0.26	100
Fine Particulate (PM ₁₀) (mg/m ³)	<0.2	NA
Lead (mg/m ³)	0.0049	5.0
Mercury (mg/m ³)	<0.00016	1.0
Total Hazardous Substances (Metals) (mg/m ³)	0.055	NA

Results from testing conducted on EPL Point 1 on 5 April 2016 are below the regulatory limits listed in EPL 5345.

Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 5 April 2016 Table 5

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	23.5	°C	296.7 K
Stack pressure (average)	1020	hPa	
Stack gas velocity (average, stack conditions)	2.4	m/s	
Stack gas flowrate (stack conditions)	1.1	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.99	m ³ /s	
Fine Particulate (PM ₁₀) Testing			
Test Period	9:55	-	11:16
Fine Particulate (PM ₁₀) Mass	<0.2	mg	
Gas Volume Sampled	1.02	m ³	
Fine Particulate (PM ₁₀) Emission* ¹	<0.2	mg/m ³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	<0.2	mg/s	
Regulatory Limit	NA		
Total Particulate Testing			
Test Period	9:55	-	11:16
Total Particulate Mass	0.2	mg	
Gas Volume Sampled	0.76	m ³	
Total Particulate Emission*1	0.26	mg/m ³	
Total Particulate Mass Emission Rate*2	0.26	mg/s	
Regulatory Limit	100	mg/m ³	
Hazardous Substances (Metals) Testing			
Test Period	9:55	-	11:16
Hazardous Substances (Metals) Mass	0.069	mg	
Gas Volume Sampled	1.26	m ³	
Hazardous Substances (Metals) Emission*1	0.055	mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate* ²	0.054	mg/s	
Regulatory Limit	NA		
Moisture Content (%)	2.4		
Gas Density (dry at 1 atmosphere)	1.29	kg/m ³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas *2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 5 April 2016

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Arsenic	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Beryllium	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Cadmium	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Chromium	0.0006	0.00048	0.0016	0.0013			0.002	0.0016	0.0016
Cobalt	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Copper	0.011	0.0087	0.00047	0.00037			0.01	0.0079	0.0078
Lead	0.0062	0.0049	<0.0002	<0.00016			0.0062	0.0049	0.0048
Magnesium	0.012	0.0095	0.00089	0.0007			0.01	0.0079	0.0078
Manganese	<0.0038	<0.003	0.06	0.048			0.06	0.048	0.047
Mercury	<0.0002	<0.00016	<0.0002	<0.00016	<0.0002	<0.00016	<0.0002	<0.00016	<0.00016
Nickel	0.0005	0.0004	0.00079	0.00063			0.001	0.00079	0.00078
Selenium	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Thallium	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Tin	<0.0002	<0.00016	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Vanadium	<0.004	<0.0032	<0.0002	<0.00016			<0.0002	<0.00016	<0.00016
Zinc	0.13	0.1	0.0033	0.0026			0.1	0.079	0.078
Total Hazardous Metals*	0.0073	0.0058	0.062	0.05	<0.0002	<0.00016	0.069	0.055	0.054
Total Metals	0.16	0.12	0.067	0.054			0.19	0.15	0.15

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

1st Quarter Emissions Testing Report 2016 Commercial-in-Confidence

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number: 60493017

Emission Source: Shredder Baghouse

Date Sampled: 5-Apr-16

ANALYTE(S)

Fine Particulate (PM10)

Total Particulate

Hazardous Substances (Metals)

NSW EPA OM - 5
NSW EPA TM - 15
NSW EPA TM - 12, 13 & 14

METHOD

Observations made during testing period:

Sampling Performed By:

-

Vilai Kelemete-Manua

Dylan Turnbull

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:	5-Apr-16	
Client:	OneSteel He	xham
AECOM'	s Project No:	60493017
Stack/Du	ict Description:	Shredder Baghouse
Test 1:	Fine Particula	ate (PM10)
Test 2:	Total Particul	ate
Test 3:	Hazardous S	ubstances (Metals)

Otra la la ta	Dimensional	Measurement/Obser	vations		
Stack Inter	rnal Dimensions:				
Diameter OR Length/Wie	Length dth (mm)) mm Width	Cross Sectional Area Minimum No. of	› 0.45 m	2
Equivalent	Diameter N/A	mm	sampling points=	12	
nearest dis	rom sampling plane to sturbances:		Total No. of sampling No. of sampling trave	PM2.5/10=	12 12
Upstream			sampled =	D10 5/40	2
No. Diame				PM2.5/10=	2
	ostream Disturbance:	Fan Entry	No. of sampling point	s on each	~
Downstrea			traverse/port =	DM2 5/40-	6
No. Diame	eters = 2.6 own Stream Disturbance:	Otradi suit		PM2.5/10=	6
Position of	f each sampling point, for	each traverse:	Exclusion of any sam numbers - comments		
	A	В	PM10/2.5 A	PM2.5/1	10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot c	listance
1	33	3	33	3	
2	111	81	111	81	
3	225	195	225	195	
4	535	505	535	505	
5	649	619	649	619	
6	727	697	727	697	
7					
8					
9			Check of total points	against	
10			minimum, (yes/no) -		
11 12				comments.	
12					
13					
15	1000 million (1990)				
16					
17					
18					
19			General Comments:		
20					
Signed:	XAL Z		Checked:		

SamplePts Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

AECOM

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:	5-Apr-16	
Client:	OneSteel Hexham	1
AECOM'	s Project No:	60493017
Stack/Du	ict Description:	Shredder Baghouse
Test 1:	Fine Particulate (F	PM10)
Test 2:	Total Particulate	the second s
Test 3:	Hazardous Substa	ances (Metals)

Sampling time start:	9:48	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:48	0	20.9	0.0
2	9:49	0	20.9	0.0
3	9:50	0	20.9	0.0
4	9:51	0	20.9	0.0
5	9:52	0	20.9	0.0
6	9:53	0	20.9	0.0
7	9:54	0	20.9	0.0
8	9:55	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	6 0.0 %

Moisture content (M3): Moisture percentage (M2): 0.99 1.50 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			_
CO:	0.0000 %,(wet)	N ₂ :	77.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H₂O:	1.50 %(=M2)			
Therefore	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:	5-Apr-16	
Client:	OneSteel Hexhan	1
AECOM	s Project No:	60493017
Stack/Du	uct Description:	Shredder Baghouse
Test 1:	Fine Particulate (F	PM10)
Test 2:	Total Particulate	
Test 3:	Hazardous Substa	ances (Metals)

Sampling time start:	11:09	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:09	0	20.9	0.0
2	11:10	0	20.9	0.0
3	11:11	0	20.9	0.0
4	11:12	0	20.9	0.0
5	11:13	0	20.9	0.0
6	11:14	0	20.9	0.0
7	11:15	0	20.9	0.0
8	11:16	0	20.9	0.0
	Averages:	0.0 ppn	n 20.9 %	0.0 %

Moisture content (M3): Moisture percentage (M2):

2.22 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)
Gas Comp	positions converted to wet basis:	and from	7.0 10.000
CO:	0.0000 %,(wet)	N ₂ :	77.3 %,(wet)
CO ₂ :	0.0 %,(wet)	O ₂ :	20.4 %,(wet)
H₂O:	2.22 %(=M2)		
Therefore	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

 Date:
 5-Apr-16

 Client:
 OneSteel Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Baghouse

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Enterline

Time :	9:45	Barometric Pi			hPa
Page No. :	1 of 1	Pitot Correction		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position No.	Distance from far wall (mm)	Differential Pressure ∆P, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	0.005	22.0	295.2	2.4
1/2	81	0.005	22.0	295.2	2.4
1/3	195	0.005	22.0	295.2	2.4
1/4	505	0.005	22.0	295.2	2.4
1/5	619	0.005	22.0	295.2	2.4
1/6	697	0.005	22.0	295.2	2.4
2/1	3	0.005	22.0	295.2	2.4
2/2	81	0.005	22.0	295.2	2.4
2/3	195	0.005	22.0	295.2	2.4
2/4	505	0.005	22.0	295.2	2.4
2/5	619	0.005	22.0	295.2	2.4
2/6	697	0.005	22.0	295.2	2.4
	1				
Average	1		22.0	295.2	2.4

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -0.5 mm 1019.95 hPa

STACK ANALYSIS

SAMPLING	OF	FINE	PARTICUL	ATE	(PM10)
Detes		E A	10		

Date: 5-Apr-	16					
Client: OneSteel H	exham					
AECOM's Project No:		60493017				
Stack Description No .:	Shredder Bag	ghouse				
Sample Nozzle No.:	fine9		Sample Nozzle Ar	rea (An):	5.86	x 10 ⁻⁵ m ²
Sampling Port No .:	1 to 2		Thimble No:		T407	
Page No:	1 of 1		Blank thimble No:		0	
Leak Check (Pre-Samp	ling)		Leak Check (Pos	st Sampling	1)	
Meter start: 414.30	72 Meter finish:	414.3072	Meter start:	415.4855	Meter finish:	415.4855
Time start: 9:	30 Time finish:	9:31	Time start:	11:17	Time finish:	11:18
Therefore, leakage rate =	= no leak	L/min	Therefore, leakag	e rate =	no leak	L/min
(>0.1 l/min. is unaccepta	ble)		(>0.1 l/min. is una	cceptable)		
Repeat:			Repeat:			
Comments:			Comments:			

Sampling Record Table

Barometric Pressure:	1020 hPa (s	tart);	1020 hPa (finish)
Meter start:	414.3098	Time start:	9:55
Meter correction factor (GMf) :		1.0100	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:45	33	13.5	41.0	31.0		Yes
1/2	0:06:45	111	13.5	44.0	32.0	Personal State	Yes
1/3	0:06:45	225	13.5	47.0	33.0		Yes
1/4	0:06:45	535	13.5	50.0	35.0	1	Yes
1/5	0:07:00	649	13.5	54.0	38.0	1	Yes
1/6	0:06:45	727	13.5	57.0	41.0		Yes
2/1	0:06:45	33	13.5	57.0	42.0	10	Yes
2/2	0:06:45	111	13.5	58.0	43.0	I)	Yes
2/3	0:06:45	225	13.5	59.0	44.0		Yes
2/4	0:07:00	535	13.5	60.0	45.0	1	Yes
2/5	0:06:45	649	13.5	60.0	47.0	100 C	Yes
2/6	0:06:45	727	13.5	61.0	48.0		Yes
Averages				54.0	39.9	no result	

STACK ANALYSIS

Date:	5-Apr-16						
Client: One	Steel Hex	ham					
AECOM's Projec	t No:		60493017				
Stack Description	No.:	Shredder Bag	house				
Sample Nozzle N	lo.:	S19		Sample Nozzle A	rea (An):	6.81	x 10 ⁻⁵ m ²
Sampling Port No	o.:	1 to 2		Thimble No:		T414	
Page No:		1 of 1		Blank thimble No:	2		
Leak Check (Pre	-Samplin	g)		Leak Check (Pos	st Sampling	1)	
Meter start:	45.7908	Meter finish:	45.7908	Meter start:	46.6436	Meter finish:	46.6436
Time start:	9:32	Time finish:	9:33	Time start:	11:19	Time finish:	11:20
Therefore, leakag	ge rate =	no leak	L/min	Therefore, leakag	je rate =	no leak	L/min
(>0.1 l/min. is una	acceptable	:)		(>0.1 l/min. is una	acceptable)		
Repeat:				Repeat:			
Comments:				Comments:			

Sampling Record Table

Barometric Pressure:	1020 hPa (s	tart);	1020 hPa (finish)
Meter start:	45.7942	Time start:	9:55
Meter correction factor (GMf) :		1.0100	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:48	33	9.9	32.0	29.0		Yes
1/2	0:13:36	111	9.9	33.0	30.0	· · · · · · · ·	Yes
1/3	0:20:24	225	9.9	35.0	31.0		Yes
1/4	0:27:12	535	9.9	37.0	32.0	I	Yes
1/5	0:34:00	649	9.9	38.0	33.0		Yes
1/6	0:40:48	727	9.9	40.0	35.0		Yes
2/1	0:47:36	33	9.9	40.0	36.0		Yes
2/2	0:54:24	111	9.9	41.0	36.0		Yes
2/3	1:01:12	225	9.9	41.0	37.0		Yes
2/4	1:08:00	535	9.9	42.0	37.0		Yes
2/5	1:14:48	649	9.9	42.0	38.0		Yes
2/6	1:21:36	727	9.9	42.0	38.0		Yes
Averages				38.6	34.3	no result	

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS) 5-Apr-16 Date: **OneSteel Hexham** Client: AECOM's Project No: 60493017 Shredder Baghouse Stack Description No .: x 10⁻⁵m² Sample Nozzle No .: G12 Sample Nozzle Area (An): 11.18 Sampling Port No .: 1 to 2 Thimble No: 0 Page No: Blank thimble No: 1 of 1 Leak Check (Pre-Sampling) Leak Check (Post Sampling) 335.9444 Meter start: 337.3690 Meter finish: Meter start: 335.9444 Meter finish: 337.3690 9:34 Time finish: Time start: 9:35 Time start: 11:21 Time finish: 11:22 Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min (>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable) Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure:	1020 hPa (s	itart);	1020 hPa (finish)
Meter start:	335.9485	Time start:	9:55
Meter correction factor (GMf) :		1.0000	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:48	33	16.2	31.0	26.0		Yes
1/2	0:13:36	111	16.2	34.0	27.0		Yes
1/3	0:20:24	225	16.2	37.0	27.0		Yes
1/4	0:27:12	535	16.2	39.0	28.0		Yes
1/5	0:34:00	649	16.2	41.0	29.0		Yes
1/6	0:40:48	727	16.2	42.0	30.0		Yes
2/1	0:47:36	33	16.2	42.0	31.0	-	Yes
2/2	0:54:24	111	16.2	43.0	32.0		Yes
2/3	1:01:12	225	16.2	43.0	33.0		Yes
2/4	1:08:00	535	16.2	44.0	33.0		Yes
2/5	1:14:48	649	16.2	44.0	34.0		Yes
2/6	1:21:36	727	16.2	45.0	34.0		Yes
-				h			_
						-	
Averages				40.4	30.3	no result	

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

 Date:
 5-Apr-16

 Client:
 OneSteel Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Baghouse

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Enter State Stat

Time :	11:24	Barometric Pr			hPa
Page No. :	1 of 1	Pitot Correction		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	Pascals 0.005	25.0	298.2	2.4
1/2	81	0.005	25.0	298.2	2.4
1/2	195	0.005	25.0	298.2	2.4
1/4	505	0.005	25.0	298.2	2.4
1/4	619	0.005	25.0	298.2	2.4
1/6	697	0.005	25.0	298.2	2.4
1/0	007	0.000	20.0	200.2	
2/1	3	0.005	25.0	298.2	2.4
2/2	81	0.005	25.0	298.2	2.4
2/3	195	0.005	25.0	298.2	2.4
2/4	505	0.005	25.0	298.2	2.4
2/5	619	0.005	25.0	298.2	2.4
2/6	697	0.005	25.0	298.2	2.4
Average			25.0	298.2	2.4

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -0.5 mm 1019.95 hPa

A-COM

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:	5-Apr-16		Client:	OneSteel	Hexham
AECOM's P	roject No:	60493017	Stack/Duct	Description:	Shredder Baghouse

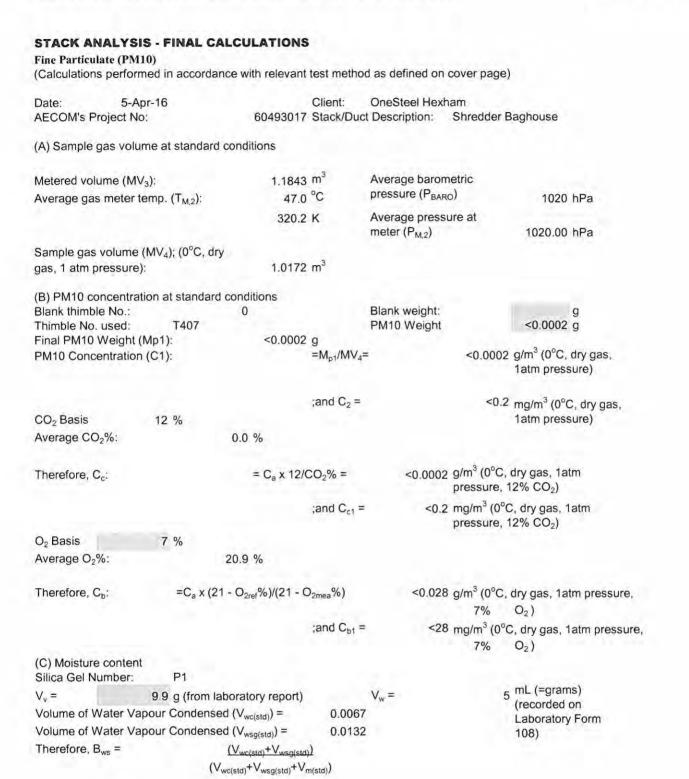
	Particulate Metals Results	Gaseous Metals Results	Oixdi	sable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCI (mg) (I Required) (5C)
Antimony	<0.0002	<0.0002	0.00000000000	44444444646466	0.0000000000000000000000000000000000000
Arsenic	<0.0002	<0.0002	2002200022	10200000000	20000000000000
Beryllium	<0.0002	<0.0002			
Cadmium	<0.0002	<0.0002	60000-00-00-0	han ang ang ang ang ang ang ang ang ang a	
Chromium	0.0006	0.0016	60908666666		
Cobalt	<0.0002	<0.0002			
Copper	0.011	0.00047			
Lead	0.0062	<0.0002	8.5326259.63		
Magnesium	0.012	0.00089	600000000		in the second second second
Manganese	<0.0038	0.06	Receptedates		
Mercury	<0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002
Nickel	0.0005	0.00079	0.665555566		
Selenium	<0.0002	<0.0002	0.000000000		2000300000000
Thallium	<0.0002	<0.0002			
Tin	<0.0002	<0.0002	1300001001001	1010010000000	2010/02/02/02/02/02/02/02/02/02/02/02/02/02
Vanadium	<0.004	<0.0002	0.000000000	000000000000	Caston December
Zinc	0.13	0.0033	00000000000	000000000000	4050000000

Client:

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

5-Apr-16

Date:


* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	< 0.0002	< 0.00016	< 0.0002	< 0.00016		100000000	< 0.0002	< 0.00016	< 0.00016
Arsenic	< 0.0002	< 0.00016	< 0.0002	< 0.00016	intervience inter	00666666666666666	< 0.0002	< 0.00016	< 0.00016
Beryllium	< 0.0002	< 0.00016	<0.0002	< 0.00016	000000000000000000000000000000000000000		< 0.0002	< 0.00016	< 0.00016
Cadmium	< 0.0002	< 0.00016	< 0.0002	< 0.00016			< 0.0002	< 0.00016	< 0.00016
Chromium	0.0006	0.00048	0.0016	0.0013	10000000000	0000000000	0.002	0.0016	0.0016
Cobalt	< 0.0002	<0.00016	< 0.0002	< 0.00016			< 0.0002	< 0.00016	< 0.00016
Copper	0.011	0.0087	0.00047	0.00037	0000000000000000	100000000000	0.01	0.0079	0.0078
Lead	0.0062	0.0049	< 0.0002	< 0.00016	20100000000000	2000000000000	0.0062	0.0049	0.0048
Magnesium	0.012	0.0095	0.00089	0.0007			0.01	0.0079	0.0078
Manganese	< 0.0038	< 0.003	0.06	0.048	169698006666	144448844444	0.06	0.048	0.047
Mercury	< 0.0002	< 0.00016	< 0.0002	< 0.00016	< 0.0002	< 0.00016	< 0.0002	< 0.00016	< 0.00016
Nickel	0.0005	0.0004	0.00079	0.00063	0.0000000000000000000000000000000000000	n an tha an tha	0.001	0.00079	0.00078
Selenium	< 0.0002	< 0.00016	< 0.0002	< 0.00016	100000000000000000000000000000000000000	1646646646666	< 0.0002	< 0.00016	< 0.00016
Thallium	< 0.0002	< 0.00016	< 0.0002	< 0.00016	10000000000	POR CLOCKED	< 0.0002	< 0.00016	< 0.00016
Tin	< 0.0002	< 0.00016	< 0.0002	< 0.00016	1000000000	00000000000	< 0.0002	< 0.00016	< 0.00016
Vanadium	< 0.004	< 0.0032	< 0.0002	< 0.00016			< 0.0002	< 0.00016	< 0.00016
Zinc	0.13	0.1	0.0033	0.0026		060000000000	0.1	0.079	0.078
Total Hazardous Metals*	0.0073	0.0058	0.062	0.05	<0.0002	<0.00016	0.069	0.055	0.054
Total Metals	0.16	0.12	0.067	0.054			0.19	0.15	0.15

OneSteel Hexham

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Q4AN(EV)-332-FM31

1.92 %

B_{ws} =

Q4AN(EV)-332-FM31

Emission Measurement Calculations Spreadsheet

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

> (ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)

1.186 kg/m³ (stack conditions, wet)

2.40 m/s (stack conditions, wet)

N/A m/s (stack conditions, wet)

2.40 m/s

2.40 m/s

N/A m/s

(E) Gas Velocities

ANZ

(i) Average of pre-sampling velocities:

(iii) Gas density at stack conditions =

(ii) Average of post-sampling velocities:

(iii) Average of while-sampling velocities:

(iv) Overall average of pre-sampling and postsampling velocities (Vs): (Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

=

Qstack =		Vs x A =		1.09 m ³ /s (stack conditions)
Qstd =	Qstack x	<u>Ps</u> x	(Tstd) x	<u>(100 - B_w)</u>
		(Pstd)	(Ts)	100

Qstd =

1.0 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd = =	<0.0002 <0.2	g/s (0°C, dry gas, 1 atm pressure mg/s (0°C, dry gas, 1 atm pressure))	
	C _{1a} x Qstd =	<0.0002	g/s (0°C, dry gas, 1 atm pressure	12%	CO ₂)
	=	<0.2	mg/s (0°C, dry gas, 1 atm pressure	12%	CO ₂)
	C _{1a} x Qstd =	<0.028	g/s (0°C, dry gas, 1 atm pressure	7%	O ₂)
	=	<28	mg/s (0°C, dry gas, 1 atm pressure	7%	O ₂)

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 5-A AECOM's Project No	pr-16 o:	60493017	Client: Stack/Duct	OneSteel Hexh	am Shredder Ba	aghouse
(A) Sample gas volu	me at standard con	ditions				
Metered volume (M) Average gas meter t		0.8559 36.5		Average barom pressure (P _{BARC}		1020 hPa
	1 (11,22	309.7		Average pressu (P _{M,2})	ire at meter	1020.00 hPa
Sample gas volume gas, 1 atm pressure		0.7601	m ³			
(B) Total Particulate Blank thimble No.: Thimble No. used: Final Total Particulat	T414	andard condi 0.00020		Blank weight: Total Particulate	e Weight	g 0.0002 g
Total Particulate Co			=M _{p1} /MV ₄ =		0.00026	g/m ³ (0ºC, dry gas, 1atm pressure)
CO ₂ Basis Average CO ₂ %:	12 %	0 %	;and C ₂ =		0.26	mg/m ³ (0°C, dry gas, 1atm pressure)
Therefore, C _c :		= C _a x 12/0	CO ₂ % =	0.00026	g/m ³ (0°C, c pressure, 12	dry gas, 1atm 2% CO ₂)
			;and C_{c1} =	0.26	mg/m ³ (0°C pressure, 1	, dry gas, 1atm 2% CO ₂)
O ₂ Basis	7 %					
Average O ₂ %:	20.	9 %				
Therefore, C _b :	=C _a x (21 - C) _{2ref} %)/(21 - C) _{2mea} %)	0.036		dry gas, 1atm pressure, O ₂)
			;and C _{b1} =	36	mg/m ³ (0°C 7%	, dry gas, 1atm pressure, O ₂)
(C) Moisture content Silica Gel Number:	FA7					
V _v =	9.1 g (from labora	atory report)		V _w =	6	mL (=grams) (recorded on
Volume of Water Va			0.0080			Laboratory Form
Volume of Water Va			0.0121			108)
Therefore, B _{ws} =		_{vc(std)} +V _{wsg(std)} i)+V _{wsg(std)} +V _r				
B _{ws} =	2.5	8 %				

Q4AN(EV)-332-FM31

ANZ Emission Measurement Calculations Spreadsheet

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m ³ (from Laboratory Form 10				
(ii) Re-calculated gas density based on moisture content in (c):	1.29 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)			
(iii) Gas density at stack conditions =	(ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)			
=	1.196 kg/m ³ (stack conditions, wet)			
(E) Gas Velocities				
(i) Average of pre-sampling velocities:	2.40 m/s			
(ii) Average of post-sampling velocities:	2.40 m/s			
(iii) Average of while-sampling velocities:	N/A m/s			
 (iv) Overall average of pre-sampling and post- sampling velocities (Vs): (Note: (Vs) is from all individual data, not from (i) 	2.40 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)			

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =		Vs x A =	1.09 m ³ /s (stack conditions)
Qstd =	Qstack x	<u>Ps</u> x	<u>(Tstd)</u> × <u>(100 - B_w)</u>
		(Pstd)	(Ts) 100

1.0 m³/s (0°C, dry gas, 1 atm pressure)

Qstd =

and (ii) alone.)

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.00026	g/s (0°C, dry gas, 1 atm pressure)	
	() () () () () () () () () ()	0.26	mg/s (0°C, dry gas, 1 atm pressure)	
	C _{1a} x Qstd =	0.00026	g/s (0°C, dry gas, 1 atm pressure	12%	CO ₂)
	(<u></u>	0.26	mg/s (0°C, dry gas, 1 atm pressure	12%	CO ₂)
	C _{1a} x Qstd =	0.036	g/s (0°C, dry gas, 1 atm pressure	7%	O ₂)
	=	36	mg/s (0°C, dry gas, 1 atm pressure	7%	O ₂)

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK	ANALYSIS	- FINAL	CALCULATIONS
-------	----------	---------	--------------

Hazardous Substances (Metals) (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 5-A AECOM's Project N	.pr-16 o:	60493017	Client: Stack/Duc	OneSteel Hex t Description:	ham Shredder Ba	aghouse
(A) Sample gas volu	ime at standard co	nditions				
Metered volume (M	V ₃):	1.4167		Average baror		
Average gas meter	temp. (T _{M,2}):	35.4	°C	pressure (P _{BAR}	RO)	1020 hPa
		308.6	к	Average press (P _{M,2})	sure at meter	1020.00 hPa
Sample gas volume	(MV ₄); (0°C, dry					
gas, 1 atm pressure):	1.2625	m ³			
(B) Metals concentra	ation at standard o	onditions				
Blank thimble No.:	ation at Standard G	onditions		Blank weight:		g
Thimble No. used:		0		Metals Weight		0.000069 g
Final Metals Weight	(Mp1):	0.00007	g			
Metals Concentratio	on (C1):		=M _{p1} /MV ₄ =			g/m ³ (0°C, dry gas, 1atm pressure)
			;and $C_2 =$			mg/m ³ (0°C, dry gas,
CO ₂ Basis	12 %					1atm pressure)
Average CO ₂ %:	C	0.0 %				
Therefore, C _c :		= C _a x 12/0	CO ₂ % =	0.00005	5 g/m ³ (0°C, d pressure, 12	
			;and C _{c1} =	0.05	5 mg/m ³ (0°C, pressure, 12	dry gas, 1atm 2% CO ₂)
O ₂ Basis	7 %					
Average O ₂ %:	20).9 %				
Therefore, C _b :	=C _a x (21 -	O _{2ref} %)/(21 - C	0 _{2mea} %)	0.007		ry gas, 1atm pressure, O ₂)
			;and C _{b1} =	7.	7 mg/m ³ (0°C,	dry gas, 1atm pressure, O ₂)
(C) Moisture conten Silica Gel Number:	t Z6					
V _v =	12 g (from labo	ratory report)		V _w =		mL (=grams)
Volume of Water Va			0.0120			(recorded on Laboratory Form
Volume of Water Va			0.0160			108)
Therefore, B _{ws} =		/wc(std)+Vwsg(std)	2			
		td)+V _{wsg(std)} +V _r				

B_{ws} = 2.17 %

Q4AN(EV)-332-FM31

ANZ **Emission Measurement Calculations Spreadsheet**

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals) (D) Gas Composition and Density (Re-calculation) 1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling: (ii) Re-calculated gas density based on moisture content in (c): 1.29 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure) (iii) Gas density at stack conditions = (ii) x (273.2) x (Ps)(273.2+Ts) (1013.25) 1.196 kg/m³ (stack conditions, wet) = (E) Gas Velocities (i) Average of pre-sampling velocities: 2.40 m/s (ii) Average of post-sampling velocities: 2.40 m/s (iii) Average of while-sampling velocities: N/A m/s (iv) Overall average of pre-sampling and post-2.40 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet) (Note: (Vs) is from all individual data, not from (i) and (ii) alone.) (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2) Qstack = Vs x A = 1.09 m³/s (stack conditions) Qstd = Ps x (Tstd) x $(100 - B_w)$ Qstack x (Ts) (Pstd) 100 Qstd = 1.0 m³/s (0°C, dry gas, 1 atm pressure) (G) Mass Emission Rate C1a x Qstd = g/s (0°C, dry gas, 1 atm pressure Rm = 0.000054 0.054 mg/s (0°C, dry gas, 1 atm pressure C1a x Qstd = 0.000054 g/s (0°C, dry gas, 1 atm pressure CO₂) 12% mg/s (0°C, dry gas, 1 atm pressure 0.054 12% CO_2) -C1a x Qstd = g/s (0°C, dry gas, 1 atm pressure 0.0076 7% $O_2)$ 7.6 mg/s (0°C, dry gas, 1 atm pressure 7% O_2)

AECOM

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, S ONESTEEL HEXH/ 5-Apr-16 FINE PARTICULATE (I TOTAL PARTICULA HAZARDOUS SUBSTANCES	AM PM10) NTE	
Sampling Conditions:	1	
Stack internal diameter at test location	760 mm	10000
Stack gas temperature (average)	23.5 °C	296.7 K
Stack pressure (average) Stack gas velocity (average, stack conditions)	1020 hPa 2.4 m/s	
Stack gas flowrate (stack conditions)	1.1 m ³ /s	
Stack gas flowrate (stack conditions) Stack gas flowrate (0 ⁰ C, dry gas, 1 atm pressure)	0.99 m ³ /s	
Fine Particulate (PM10) Testing	0.99 11 /5	
Test Period	9:55 -	11:16
Fine Particulate (PM10) Mass	<0.2 mg	11.10
Gas Volume Sampled	1.02 m ³	
Fine Particulate (PM10) Emission*1	<0.2 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	<0.2 mg/s	
Regulatory Limit	NA mg/m ³	
Total Particulate Testing		
Test Period	9:55 -	11:16
Total Particulate Mass	0.2 mg	
Gas Volume Sampled	0.76 m ³	
Total Particulate Emission*1	0.26 mg/m ³	
Total Particulate Mass Emission Rate*2	0.26 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	9:55 -	11:16
Hazardous Substances (Metals) Mass	0.069 mg	
Gas Volume Sampled	1.26 m ³	
Hazardous Substances (Metals) Emission*1	0.055 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.054 mg/s	
Regulatory Limit	NA mg/m ³	
Moisture Content (%)	2.4	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (11 pages)

Appendix B Laboratory Results (11 pages)

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017	Report :	11003	B-O-P Page 1 of 1
Description :	Stack Emission Samples Received: 07-Apr-16	<u>Date :</u>	12-Aj	pr-16
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u>	FILE	
Thimble ID		Volume ((mL)	Total Particulate Matter (g)
T407	Filter	-		<0.0002
T414	Filter	-		0.0002

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 Reported By:

Robert Dawson

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

Note : Sampled by Client

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017	Report :	11003-0-М	Page 1 of 1
Description :	Stack Emission Samples Received: 07-Apr-16	Date :	12-Apr-16	
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u>	FILE	
Jar ID	Moisture (g)			
FA7	9.1			
P 1	9.9			
Z6	12.0			

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 Reported By:

Robert Dawson

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

LEEDER CONSULTING

A.B.N. 44 000 964 278 3 - 5, 18 Redland Drive Mitcham, Vic, 3132 Telephone: (03) 9874 1988 Fax: (03) 9874 1933

Chartered Chemists

19-Apr-2016

AECOM

17 Warabrook Bvde Warabrook

NSW 2304 Attention: Cye Buckland

REPORT NUMBER: M160775

Site/Client Ref: 60493017/1.1 Order No: 60493017/1.1

CERTIFICATE OF ANALYSIS

SAMPLES: Twelve samples were received for analysis

DATE RECEIVED:

DATE COMMENCED: 6-Apr-2016

METHODS:

See Attached Results

6-Apr-2016

RESULTS:

Please refer to attached pages for results.

÷__

Note: Results are based on samples as received at SGS Leeder Consulting's laboratories

REPORTED BY:

ING

Ming Dai Senior Chemist

ACCREDITATION

NATA Accredited Laboratory Number: 14429

Accredited for compliance with ISO/IEC 17025.

Page 1 of 7

ANALYTICAL RESULTS

Matrix: Filter

Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02 Sample units are expressed in µg total

	Leeder ID Client ID	2016010602 Metais 1	2016010603 Metals 12	2016010604 Method
Analyte Name	Sampled Date PQL	5/04/2016	5/04/2016	Blank
Sb	0.2	nd	nd	nd
As	0.2	nd	nd	nd
Be	0.2	nd	nd	nd
Cd	0.2	nd	nd	nd
Cr	0.2	0.4	0.5	nd
Co	0.2	nd	nd	nd
Cu	0.2	0.2	0.2	nd
Pb	0.2	0.2	nd	nd
Mg	2	37	29	nd
Mn	0.2	0.4	3.5	nd
Hg	0.2	nd	nd	nd
Ni	0.2	nd	nd	nd
Se	0.2	nd	nd	nd
TI.	0.2	nd	nd	nd
Sn	0.2	nd	nd	nd
v	0.2	3.7	4.0	nd
Zn	0.2	460	370	nd

Test Started: 18/04/2016

ANALYTICAL RESULTS

Test Started: 18/04/2016

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

Sample units are expressed in µg total

	Leeder ID Client ID	2016010605 Metals 3	2016010606 Metals 4	2016010607 Metals 8A
Analyte Name	Sampled Date PQL	5/04/2016	5/04/2016	5/04/2016
Sb	0.1	nd	nd	nd
As	0.1	nd	nd	nd
Ве	0.1	nd	nd	nd
Cd	0.1	0.1	nd	nd
Cr	0.1	0.7	1.7	nd
Co	0.1	nd	nd	nd
Cu	0.1	11	1.0	nd
Pb	0.1	6.1	nd	nd
Mg	0.1	5.7	2.6	1.4
Mn	0.1	0.9	61	0.3
Hg	0.1	nd	nd	nd
Ni	0.1	0.6	0.9	nd
Se	0.1	nd	nd	nd
ті	0.1	nd	nd	nd
Sn	0.1	nd	nd	nd
v	0.1	nd	nd	nd
Zn	0.1	39	3.6	0.3
Sample Volume		95	320	300

SGS

LEEDER Consulting

ANALYTICAL RESULTS

Test Started: 18/04/2016

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total) Sample units are expressed in µg total

	Leeder ID Client ID	2016010608 Metals 9	2016010609 Metals 5A	2016010610 Metals 5C	2016010611 Metals 8B	2016010612 Metals 11	2016010613 Method
Analyte Name	Sampled Date PQL	5/04/2016	5/04/2016	5/04/2016	5/04/2016	5/04/2016	
Sb	0.1	nd					Blank
As	0.1						nd
Be		nd					nd
	0.1	nd					nd
Cd	0.1	nd					nd
Cr	0.1	nd					nd
Co	0.1	nd				4	nd
Cu	0.1	0.5					nd
Pb	0.1	nd					nd
Mg	0.1	0.2					nd
Mn	0.1	0.4					nd
Hg	0.1	nd	nd	nd	nd	nd	nd
Ni	0.1	nd					nd
Se	0.1	nd					nd
ті	0.1	nd					nd
Sn	0.1	nd					nd
v	0.1	nd					nd
Zn	0.1	nd		-			nd
Sample Volume		200	98	250	100	250	

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Sample units are expressed in µg total

2016010614 Leeder ID 2016010615 2016010616 Metals 5B **Client ID** Metals 10 Method Sampled Date Analyte Name 5/04/2016 5/04/2016 PQL Blank Hg 0.5 nd nd nď Sample Volume 400 100

Test Started: 18/04/2016

QA/QC RESULTS

Matrix: Filter

Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02 Quality Control Results are expressed in Percent Recovery of expected result

r

	Leeder ID	2016010617	2016010618
	Client ID	Method	Method
Analyte Name	Sampled Date PQL	Spike	Spike Dup
Sb		97	101
As		98	98
Ве		103	102
Cd		99	98
Cr		108	108
Co		112	113
Cu		101	102
Pb		114	115
Mg		106	109
Mn		103	107
Нg		99	101
Ni		101	99
Se		94	92
3I		116	. 117
Sn		102	102
v		106	104
Zn		102	102

Test Started: 18/04/2016

QA/QC RESULTS

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total) Quality Control Results are expressed in Percent Recovery of expected result

Test Started: 18/04/2016

	Leeder ID Client ID	2016010619 Method	2016010620 Method
Analyte Name	Sampled Date PQL	Spike	Spike Dup
Sb		105	105
As		100	100
Ве	3	98	104
Cd		100	101
Cr		108	108
Co		114	113
Cu		110	110
Pb		123	124
Mg		104	107
Mn		103	102
Hg		104	105
Ni		102	102
Se		98	102
ТІ		1175	1197
Sn		88	92
v		113	114
Zn		93	93

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total) Quality Control Results are expressed in Percent Recovery of expected result

Tes			

	Leeder ID Client ID	2016010621 Method	2016010622 Method
Analyte Name	Sampled Date PQL	Spike	Spike Dup
Hg		110	109

QUALIFIERS / NOTES FOR REPORTED RESULTS

- PQL Practical Quantitation Limit
- nd Not Detected The analyte was not detected above the reported PQL.
- is Insufficient Sample to perform this analysis.
- T Tentative identification based on computer library search of mass spectra.
- NC Not calculated and/or Results below PQL
- NV No Vacuum, Canister received above standard atmospheric pressure
- nr Not Requested for analysis.
- R Rejected Result results for this analysis failed QC checks.
- SQ Semi-Quantitative result quantitation based on a generic response factor for this class of analyte.
- IM Inappropriate method of analysis for this compound
- U Unable to provide Quality Control data high levels of compounds in sample interfered with analysis of QC results.
- UF Unable to provide Quality Control data- Surrogates failed QC checks due to sample matrix effects
- L Analyte detected at a level above the linear response of calibration curve.
- E Estimated result. NATA accreditation does not cover estimated results.
- C1 These compounds co-elute.
- -- Parameter Not Determined
- CT Elevated concentration. Results reported from carbon tube analysis
- ** Sample shows non-petroleum hydrocarbon profile

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents

This report must not be reproduced, except in full.

APPENDIX ONE.

CHAIN OF CUSTODY DOCUMENT

Chain of Custody Record -SGS Leeder Consulting

Dispatch samples to: Unit 5/18 Redland Drive, Mitcham, VIC, 3132

Attn: Lyndall Stevens - Contact Ph: (03) 9874 1988 Fax: (03) 9874 1933 Email: au.samplereceipt.mitcham@sgs.com

	200-012-00-017-00-0						Mint of Contract of Contract	construction of construction																
CLIENT NAME: AECOM CLIENT ADDRESS: 17 Warabrook I Warabrook NSW 2304					CONTACT PHONE No: CONTACT FAX No: RESULTS REQUIRED BY:					02 4911 4900 02 4911 4999 Standard						Sample Disposal (Please X) After: 4 Weeks () 6 Weeks ()								
																-	·	-				- 、 ,		
																Analyses Required (Analyte + Method Code)								
CONTACT: Cye Buckland				1	EMAIL REPORT TO:					cye.buckland@aecom.com						Ī					1	T		
SAMPLED BY: DT VK			/K		LABQ	UOTE NU	MBER	:										:						
ROJECT REF. / ORDER No:	60493017/1.1					ners/Prese		sk) (G=glass, P=plastic)					Method 29											
Client Sample ID	Date		Matrix		0.1-1L	0.1-1.0	0.1-1.0	-	40ml 0.1-1L 125mL 125mL			125mL	125mL (P)	K .										
	Sampled	Filter	Impinger	KMnO4	Jar(G) n.a.	litre(G) Nat.	litre(P) Nat.	Vial(G) Nat.	Vial(G) H2SO4	(P) H2SO4	(P) HCl acid washed	(P) Zn Ace. NaOH	Filtered Yes/No HNO3	125mL (P) NaOH	Metals -USEPA Mercury									
Metals 1	5/04/16	1	Ī		x							110011	111105					-	+				_	
Metals 3	5/04/16	1	x				x						<u></u>		^ x	†		+	-	1		<u> </u>	╋	
Metals 4	5/04/16	5	x				x								r.			1				<u> </u>	┿	
Metals 5A	5/04/16	5	x	Τ			x		<u> </u>						~	x							┿	
Metals 5B	5/04/16	5		x		x							· · ·			x					5		╀─	
Metals 5C	5/04/16		x				x									x		1			·		+-	
Metals 8A	5/04/16		x				x								x		······	1.	1				+	
Metals 8B	5/04/16		x				x									x		1		 			+	
Metals 9	5/04/16		x				x				e ^t				x			ę.,	·	2			\uparrow	
Metals 10	5/04/16			x		x										x		1					\uparrow	
Metals 11	5/04/16		x				x							2		x							T	
Metals 12	5/04/16	x			x										x				1	-			1	
																	×.						1	
	Totals:	li		<u> </u>	2	2	8								6	6			1				†	
CHAIN OF CUSTODY RECORD RELEASED BY: (Name) (Signature) (Date / Time)																Please Note: Dissolved metals require filtering in the field.								
	(Signature) (Date / (Signature) (Date /				· · · · · · · · · · · · · · · · · · ·				illed? Yes (Ag)						Please indicate whether the HNO3 acidified sample has been filtered. <u>Comments:</u> (eg. Highly contaminated samples, reporting requirements etc) *Sb. As, Be, Cd, Cr, Co, Cu, Pb, Mg, Mn, Hg, Ni, Se, Tl, S									

AECOM

AECOM Australia Pty Ltd

17 Warabrook Boulevard Warabrook NSW 2304 PO Box 73 Hunter Region MC NSW 2310 Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925