

OneSteel Recycling Pty Ltd
Doc No. 60493017_2.1_Q1_2017
60493017

1st Quarter Emissions Testing Report 2017

OneSteel Recycling Hexham

1st Quarter Emissions Testing Report 2017

OneSteel Recycling Hexham

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd
17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com
ABN 20 093 846 925

30-Mar-2017

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 1st Quarter Emissions Testing Report 2017

Ref 60493017

Date 30-Mar-2017

Prepared by Colin Clarke

Reviewed by Paul Wenta

NATA Signatory James Lang

Revision History

Boy	Rev Revision Date Details		Authorised		
Rev	Revision Date	Details	Name/Position	Signature	
0	30-Mar-2017	Report for Issue	Chad Whitburn Compliance Services - Team Leader	ault	

Table 6

Table of Contents

1.0	Introducti	on	1
2.0	Sampling	Plane Requirements	3
3.0	Methodo	ogy	5
	3.1	NATA Accredited Methods	5
	3.2	Equipment Calibration	5
4.0	Sampling	Location	7
	4.1	Sampling Location Summary	7
5.0	Results		9
Appendix	×А		
	Field She	eets (17 pages)	Α
Appendix	х В		
	Laborato	ry Results (8 pages)	В
List of T	ables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	3
Table 2		AECOM NATA Endorsed Methods	5
Table 3		Sampling Location Summary	7
Table 4		Shredder Baghouse Emission Results Summary, 9 February 2017	9
Table 5		Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	

Hazardous Substances (Metals) Elemental Analysis Results, 9 February 2017

10

11

Results, 9 February 2017

1

1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Bag house Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 9 February 2017 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 13017-0-M & 13017-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Leeder Consulting laboratory NATA accreditation number 14429, performed the following analysis detailed in report number ME301905:
 - Hazardous Substances (Metals).

Revision 0 – 30-Mar-2017 Prepared for – OneSteel Recycling Pty Ltd – ABN: 28 002 707 262

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

With the exception of point 'b', the sampling plane was in accordance with AS4323.1. The gas stream velocities at each sampling point were found to be 2.5 m/s. Please note that the bag house was not running at full capacity at the time of testing.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in **Table 2**.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1 (NSW EPA TM-1)	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2 (NSW EPA TM-15)	USEPA (2000) Method 5 under approved circumstances	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2 or 2C or USEPA (1999) Method 2F or 2G or 2H (as appropriate)	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201 or 201A (as appropriate)	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 9 February 2017.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes ²
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes ²

AS 4323.1 Section 4.1

The sampling location was ideal in terms of flow disturbances, but did not comply with AS 4323.1 point b) as the corrected velocity of the gas at all sampling points was found to be 2.5 m/s (minimum 3m/s).

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 9 February 2017

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	14	100
Fine Particulate (PM ₁₀) (mg/m ³)	0.84	NA
Lead (mg/m ³)	<0.44	5.0
Mercury (mg/m ³)	0.00048	1.0
Total Hazardous Substances (Metals) (mg/m³)	0.018	NA

Results from testing conducted on EPL Point 1 on 9 February 2017 are below the regulatory limits listed in EPL 5345.

Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 9 February 2017 Table 5

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	29.5	°C	302.7 K
Stack pressure (average)	1018	hPa	
Stack gas velocity (average, stack conditions)	2.5	m/s	
Stack gas flowrate (stack conditions)	1.1	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.98	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	11:43	-	14:00
Fine Particulate (PM ₁₀) Mass	0.8	mg	
Gas Volume Sampled	0.951	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	0.84	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	0.82	mg/s	
Regulatory Limit	NA	mg/m³	
Total Particulate Testing			
Test Period	11:43	-	14:00
Total Particulate Mass	12.7	mg	
Gas Volume Sampled	0.894	m^3	
Total Particulate Emission*1	14	mg/m³	
Total Particulate Mass Emission Rate*2	14	mg/s	
Regulatory Limit	100	mg/m ³	
Hazardous Substances (Metals) Testing			
Test Period	11:43	-	14:00
Hazardous Substances (Metals) Mass	0.021	mg	
Gas Volume Sampled	1.15	m^3	
Hazardous Substances (Metals) Emission*1	0.018	mg/m³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.017	mg/s	
Regulatory Limit	NA		
Moisture Content (%)	2.9		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas
*2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture
content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Hazardous Substances (Metals) Elemental Analysis Results, 9 February 2017 Table 6

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.0002	<0.00017	0.00025	0.00022			0.00025	0.00022	0.00021
Arsenic	0.0001	0.000087	<0.0001	<0.00087			0.0001	0.000087	0.000084
Beryllium	<0.0002	<0.00017	<0.0001	<0.00087			<0.0002	<0.00017	<0.00017
Cadmium	0.013	0.011	0.0017	0.0015			0.015	0.013	0.013
Chromium	0.0002	0.00017	0.00035	0.00031			0.0006	0.00052	0.0005
Cobalt	<0.0002	<0.00017	<0.0001	<0.00087			<0.0002	<0.00017	<0.00017
Copper	<0.0002	<0.00017	0.0021	0.0018			0.0021	0.0018	0.0017
Lead	<0.3104	<0.27	<0.51	<0.44			<0.51	<0.44	< 0.43
Magnesium	0.037	0.032	0.026	0.023			0.06	0.052	0.05
Manganese	<0.0038	<0.0033	<0.005	<0.0044			<0.005	<0.0044	<0.0043
Mercury	<0.0003	<0.00026	<0.0001	<0.00087	0.00055	0.00048	0.00055	0.00048	0.00047
Nickel	0.0001	0.000087	0.0028	0.0024			0.003	0.0026	0.0025
Selenium	<0.0002	<0.00017	<0.0001	<0.00087			<0.0002	<0.00017	<0.00017
Thallium	<0.0002	<0.00017	<0.0001	<0.00087			<0.0002	<0.00017	<0.00017
Tin	0.0002	0.00017	0.00085	0.00074			0.001	0.00087	0.00084
Vanadium	<0.0023	<0.002	<0.0001	<0.000087			<0.0002	<0.00017	<0.00017
Zinc	0.68	0.59	0.0033	0.0029			0.7	0.61	0.59
Total Hazardous Metals*	0.013	0.011	0.0051	0.0044	0.00055	0.00048	0.021	0.018	0.017
Total Metals	0.73	0.63	0.037	0.033			0.78	0.68	0.66

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Appendix A Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number:

60493017

Emission Source:

Shredder Stack

Date Sampled:

9-Feb-17

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Observations made during testing period: Large pause in test due to plant issues

Sampling Performed By:

Ovlan Turnbull

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description: Shredder Stack

Test 1: Test 2:

Fine Particulate (PM10) **Total Particulate**

Test 3: Hazardous Substances (Metals)

	Measurement/Observations						
Stack Inter	nal Dimensions:						
Diameter	760	mm	Cross Sectional Area	0.45 m ²			
OR	Length	Width		0.10 111			
Length/Wid			Minimum No. of				
Equivalent		mm	sampling points=	12			
			camping points	12			
Distance fr	om sampling plane to		Total No. of sampling	nointe =	12		
nearest dis			Total No. of Sampling	PM2.5/10=	12		
			No. of sampling trave		12		
Upstream ((m) = 5		sampled =	1363/00115	2		
No. Diamet			Sampled -	PM2.5/10=	2 2		
	stream Disturbance:	Fan Entry	No of compling points		2		
Downstrea		I all Lilly	No. of sampling points	s on each	_		
No. Diamet			traverse/port =	DN40 5/40	6		
		Ctool Fuit		PM2.5/10=	6		
Type of Do	wn Stream Disturbance:	Stack Exit					
Daniting		and a second	Exclusion of any sam				
Position of	each sampling point, for	each traverse:	numbers - comments:		-		
					- L		
	Α	В В	PM10/2.5 A	PM2.5/10	В		
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot dis	tances		
1	33	3	33	3			
2	111	81	111	81			
3	225	195	225	195			
4	535	505	535	505			
5	649	619	649	619			
6	727	697	727	697			
7							
8			(c) (c) (c) (d) (d)				
9							
10			Check of total points a	against			
11			minimum, (yes/no) - c				
12			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
13			-				
14							
15							
16							
17			(1)				
18			1				
19			General Comments.				
20			General Comments.				
20	2 /1 /		//-	3			
Signed:	Bulland		Charles I / /	1			
Signed:	,	8	Checked:	·····			

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

Sampling time start:	11:35	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:35	0	20.9	0.0
2	11:36	0	20.9	0.0
3	11:37	0	20.9	0.0
4	11:38	0	20.9	0.0
5	11:39	0	20.9	0.0
6	11:40	0	20.9	0.0
7	11:41	0	20.9	0.0
8	11:42	0	20.9	0.0
	Averages:	0.0 ppn	1 20.9 %	0.0 %

Moisture content (M3):

0.98

Moisture percentage (M2):

1.90 %

Measurements

CO:	0.0000 %,(dry)		N ₂ :	79.1 %,(dry)
CO ₂ :	0.0 %,(dry)		O ₂ :	20.9 %,(dry)
Gas Composition	ons converted to wet basis:			
CO:	0.0000 %,(wet)		N ₂ :	77.6 %,(wet)
CO ₂ :	0.0 %,(wet)		O ₂ :	20.5 %,(wet)
H ₂ O:	1.90 %(=M2)			
Therefore, stac	k gas density (GD) =	1.28	kg/m ³	(0°C, wet, 1 atm pressure)
Therefore, stac	k gas density (GD) =	1.29	kg/m ³	(0°C, dry, 1 atm pressure)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

Sampling time start:	13:53	Sampling port No.:	1			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	13:53	0	20.9		0.0	
2	13:54	0	20.9		0.0	
3	13:55	0	20.9		0.0	
4	13:56	0	20.9		0.0	
5	13:57	0	20.9		0.0	
6	13:58	0	20.9		0.0	
7	13:59	0	20.9		0.0	
8	14:00	0	20.9		0.0	
	Averages:	0.0 pp	om 20.9	%		%

Moisture content (M3):

0.97

Moisture percentage (M2):

2.77 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	76.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.3 %,(wet)	
H ₂ O:	2.77 %(=M2)			
Therefore,	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	11:25	Barometric Pi		1018 0.84	hPa
Page No. :	1 of 1	Pitot Correction	Pitot Correction Factor:		
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type:	ot Tube Type : S				(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential	Max Temp.	Ma Tana. (Ta)	0
No.	from far wall	Pressure		Max Temp. (Ts)	
INO.	(mm)	ΔP, kilo	°C	К	(Vs) m/s
		Pascals			
1/1	3	0.005	28.0	301.2	2.4
1/2	81	0.005	28.0	301.2	2.4
1/3	195	0.005	28.0	301.2	2.4
1/4	505	0.005	28.0	301.2	2.4
1/5	619	0.005	28.0	301.2	2.4
1/6	697	0.005	28.0	301.2	2.4
2/1	3	0.005	28.0	301.2	2.4
2/2	81	0.005	28.0	301.2	2.4
2/3	195	0.005	28.0	301.2	2.4
2/4	505	0.005	28.0	301.2	2.4
2/5	619	0.005	28.0	301.2	2.4
2/6	697	0.005	28.0	301.2	2.4
Average			20.0	204.0	0.4
Average			28.0	301.2	2.4

Static Pressure (Dwyer) (Pa):

kPa

Static Pressure (U-tube, if required):

0.5 mm

Absolute pressure in stack (hPa):

1018.05 hPa

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack Description No.:

Shredder Stack

Sample Nozzle No.: Sampling Port No.:

fine10 1 to 2

Sample Nozzle Area (An):

5.89

 $\times 10^{-5} \text{m}^2$

Page No:

1 of 1

Thimble No: Blank thimble No: T480 0

L/min

Leak Check (Pre-Sampling)

5334.7200 Meter finish:

Leak Check (Post Sampling) 5334.7200 Meter start:

5335.8002 Meter finish:

5335.8002

Meter start: Time start:

11:05 Time finish:

11:06 Time start:

14:01 Time finish:

14:02

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1018 hPa (start);

1018 hPa (finish)

Meter start:

5334.7238

Time start:

11:43

Meter correction factor (GMf):

1.0000

Sampling	Stopwatch Time at Sampling	Distance from far wall	Isokinetic Flowrate	Meter Inlet		Impinger Train Outlet	Flowrate Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:30	33	13.2	33.0	30.0		Yes
1/2	0:06:30	111	13.2	36.0	31.0		Yes
1/3	0:06:45	225	13.2	37.0	32.0		Yes
1/4	0:06:30	535	13.2	38.0	32.0		Yes
1/5	0:06:45	649	13.2	39.0	33.0	,	Yes
1/6	0:06:30	727	13.2	40.0	33.0		Yes
2/1	0:06:30	33	13.2	41.0	34.0		Yes
2/2	0:06:45	111	13.2	42.0	34.0		Yes
2/3	0:06:30	225	13.2	43.0	35.0		Yes
2/4	0:06:45	535	13.2	44.0	35.0		Yes
2/5	0:06:30	649	13.2	44.0	35.0		Yes
2/6	0:06:30	727	13.2	44.0	35.0		Yes
							80 GE 30
					200		
Augusta							
Averages leter Finish:		5335.7975		40.1 Time Finish:	33.3	no result	

Total Condensate collected:

8 ml

Silica gel No(s) used:

P32

Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date:

9-Feb-17

Client: OneSteel Hexham

AECOM's Project No: Stack Description No .:

Shredder Stack

60493017

Sample Nozzle No.:

S6

Sample Nozzle Area (An): Thimble No:

9.16

T485

Sampling Port No.: 1 to 2 Page No: Blank thimble No: 1 of 1

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

209.3770 Meter finish:

209.3770

Meter start: Time start:

208.3542 Meter finish: 11:07 Time finish:

208.3542 Meter start: 11:08 Time start:

14:03 Time finish:

no leak

14:04

 $\times 10^{-5} \text{m}^2$

Therefore, leakage rate = no leak

Therefore, leakage rate =

L/min

(>0.1 l/min. is unacceptable)

L/min

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Time start:

Sampling Record Table

Barometric Pressure:

1018 hPa (start);

1018 hPa (finish)

Meter start:

208.3572

11:43

Meter correction factor (GMf):

1.0000

	Stopwatch				T		
	Time at	Distance	Isokinetic			Impinger	
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Flowrate
Position No.	Position	(mm)	(L/min)			to develop the state of the state of the	Attained
1/1	0:06:36	33	12.9	Temp. (°C) 36.0	Temp. (°C)	Temp (°C)	(Y/N)
1/2	0:13:12	111	12.9	39.0	32.0		Yes
1/3	0:19:48	225			33.0		Yes
1/4	0:19:48	535	12.9 12.9	41.0 42.0	33.0		Yes
1/5	0:20:24	649	12.9		34.0		Yes
1/6	0:39:36	727	12.9	43.0 44.0	34.0		Yes
1/0	0.59.50	121	12.9	44.0	34.0		Yes
2/1	0:46:12	33	12.9	45.0	35.0		Yes
2/2	0:52:48	111	12.9	46.0	35.0		Yes
2/3	0:59:24	225	12.9	47.0	36.0		Yes
2/4	1:06:00	535	12.9	48.0	36.0	-	Yes
2/5	1:12:36	649	12.9	48.0	37.0		Yes
2/6	1:19:12	727	12.9	48.0	37.0		Yes
					07.0	192	103
							
				-			
			-11		-		
							-
				10 00		+	
	The state of the s	100000000000000000000000000000000000000					
Averages				43.9	34.7	no recult	
leter Finish:	***************************************	209.3748		Time Finish:	34.7	no result 14:00	

Total Condensate collected:

4 ml

Silica gel No(s) used:

P33

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date:

9-Feb-17

OneSteel Hexham Client: AECOM's Project No:

60493017

Stack Description No.:

Sample Nozzle No.: Sampling Port No.:

Shredder Stack G12

Sample Nozzle Area (An): Thimble No:

11.31 0

 $\times 10^{-5} \text{m}^2$

Page No:

1 to 2 1 of 1

Blank thimble No:

Leak Check (Post Sampling)

79.2436

Meter start: Time start:

77.9362 Meter finish: 11:09 Time finish:

77.9362 Meter start: 11:10 Time start:

79.2436 Meter finish: 14:05 Time finish:

no leak

14:06

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

L/min

(>0.1 l/min. is unacceptable)

Leak Check (Pre-Sampling)

(>0.1 l/min. is unacceptable)

Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1018 hPa (start);

1018 hPa (finish)

Meter start:

Time start:

11:43

Meter correction factor (GMf):

0.9900

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:36	33	15.8	31.0	29.0	Temp (C)	Yes
1/2	0:13:12	111	15.8	34.0	31.0		Yes
1/3	0:19:48	225	15.8	35.0	31.0		Yes
1/4	0:26:24	535	15.8	36.0	31.0		Yes
1/5	0:33:00	649	15.8	37.0	32.0		Yes
1/6	0:39:36	727	15.8	38.0	32.0		Yes
2/1	0:46:12	33	15.8	39.0	33.0		Yes
2/2	0:52:48	111	15.8	40.0	33.0		Yes
2/3	0:59:24	225	15.8	41.0	34.0		Yes
2/4	1:06:00	535	15.8	42.0	34.0		Yes
2/5	1:12:36	649	15.8	42.0	35.0		Yes
2/6	1:19:12	727	15.8	42.0	35.0		Yes
Averages				38.1	32.5	no result	

Total Condensate collected:

20 ml

Silica gel No(s) used:

G57

Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	14:10	Barometric Pi	essure :	1018	hPa	
Page No. :	1 of 1	Pitot Correction Factor :		0.84		
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.27	kg/m ³	
Pitot Tube Type:	S	,			(0 °C, Wet, 1 Atm)	
		Max.			(* **) ***(**)	
Committee Desition	Distance	Differential	M T		Name of the Control o	
Sampling Position	from far wall	Pressure	Max Temp.	Max Temp. (Ts)		
No.	(mm)	ΔP, kilo	°C	K	(Vs) m/s	
		Pascals			, , , , , ,	
1/1	3	0.005	31.0	304.2	2.5	
1/2	81	0.005	31.0	304.2	2.5	
1/3	195	0.005	31.0	304.2	2.5	
1/4	505	0.005	31.0	304.2	2.5	
1/5	619	0.005	31.0	304.2	2.5	
1/6	697	0.005	31.0	304.2	2.5	
2/1	3	0.005	31.0	304.2	2.5	
2/2	81	0.005	31.0	304.2	2.5	
2/3	195	0.005	31.0	304.2	2.5	
2/4	505	0.005	31.0	304.2	2.5	
2/5	619	0.005	31.0	304.2	2.5	
2/6	697	0.005	31.0	304.2	2.5	
						
	- 3 (15) A (15)					

					(4)	
A., a.,			- 0.1.2			
Average			31.0	304.2	2.5	

Static Pressure (Dwyer) (Pa):

kPa

Static Pressure (U-tube, if required):

0.5 mm

Absolute pressure in stack (hPa):

1018.05 hPa

Q4AN(EV)-332-FM31

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oixdi	Oixdisable Mercury Results				
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (If Required) (5C)			
Antimony	<0.0002	0.00025						
Arsenic	0.0001	<0.0001						
Beryllium	<0.0002	<0.0001						
Cadmium	0.013	0.0017		-:-::::::::::::::::::::::::::::::::::::				
Chromium	0.0002	0.00035						
Cobalt	<0.0002	<0.0001						
Copper	<0.0002	0.0021						
Lead	< 0.3104	<0.51						
Magnesium	0.037	0.026						
Manganese	<0.0038	< 0.005						
Mercury	< 0.0003	<0.0001	<0.0001	0.00055	<0.0001			
Nickel	0.0001	0.0028						
Selenium	<0.0002	<0.0001						
Thallium	<0.0002	<0.0001						
Tin	0.0002	0.00085						
Vanadium	<0.0023	<0.0001						
Zinc	0.68	0.0033						

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date: 9-F AECOM's Project No:

9-Feb-17

Client:

OneSteel Hexham

60493017 Stack/Duct Description:

Shredder Stack

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	<0.0002	< 0.00017	0.00025	0.00022			0.00025	0.00022	0.00021
Arsenic	0.0001	0.000087	<0.0001	<0.000087		-1	0.0001	0.000087	0.000084
Beryllium	<0.0002	< 0.00017	<0.0001	<0.000087			<0.0002	< 0.00017	<0.00017
Cadmium	0.013	0.011	0.0017	0.0015			0.015	0.013	0.013
Chromium	0.0002	0.00017	0.00035	0.00031			0.0006	0.00052	0.0005
Cobalt	<0.0002	< 0.00017	<0.0001	<0.000087			< 0.0002	<0.00017	<0.00017
Copper	<0.0002	< 0.00017	0.0021	0.0018			0.0021	0.0018	0.0017
Lead	< 0.3104	< 0.27	<0.51	<0.44			<0.51	< 0.44	<0.43
Magnesium	0.037	0.032	0.026	0.023			0.06	0.052	0.05
Manganese	<0.0038	< 0.0033	<0.005	< 0.0044			< 0.005	< 0.0044	< 0.0043
Mercury	<0.0003	< 0.00026	<0.0001	<0.000087	0.00055	0.00048	0.00055	0.00048	0.00047
Nickel	0.0001	0.000087	0.0028	0.0024			0.003	0.0026	0.0025
Selenium	<0.0002	< 0.00017	<0.0001	<0.000087			< 0.0002	< 0.00017	< 0.00017
Thallium	<0.0002	< 0.00017	<0.0001	<0.000087			< 0.0002	<0.00017	<0.00017
Tin	0.0002	0.00017	0.00085	0.00074			0.001	0.00087	0.00084
Vanadium	<0.0023	< 0.002	<0.0001	< 0.000087			< 0.0002	< 0.00017	<0.00017
Zinc	0.68	0.59	0.0033	0.0029			0.7	0.61	0.59
Total Hazardous Metals*	0.013	0.011	0.0051	0.0044	0.00055	0.00048	0.021	0.018	0.017
Total Metals	0.73	0.63	0.037	0.033			0.78	0.68	0.66

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0737 m³

Average barometric

Average gas meter temp. (T_{M.2}):

36.7 °C

pressure (P_{BARO})

1018 hPa

309.9 K

Average pressure at meter (P_{M2})

1018.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

0.9510 m³

(B) PM10 concentration at standard conditions

Blank thimble No .:

Blank weight: PM10 Weight

0.0008 g

Thimble No. used: Final PM10 Weight (Mp1): PM10 Concentration (C1):

T480

0.00080 g

 $=M_{D1}/MV_4=$

0.00084 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

0.84 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO2%:

0.0 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.00084 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

0.84 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

Average O2%:

20.9 %

Therefore, Cb:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.12 g/m³ (0°C, dry gas, 1atm pressure,

 O_2)

;and C_{b1} =

120 mg/m³ (0°C, dry gas, 1atm pressure,

 O_2)

(C) Moisture content

Silica Gel Number:

P32

V_v =

11 g (from laboratory report)

8 mL (=grams) (recorded on Laboratory Form

108)

Volume of Water Vapour Condensed (V_{wsq(std)}) =

0.0107 0.0147

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsq(std)})$ $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

Volume of Water Vapour Condensed (Vwc(std)) =

B_{ws} =

2.60 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

_ 1

1.161 kg/m3 (stack conditions, wet)

- (E) Gas Velocities
- (i) Average of pre-sampling velocities:

2.40 m/s

(ii) Average of post-sampling velocities:

2.50 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

2.45 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

1.11 m³/s (stack conditions)

Qstd =

Qstd =

Qstack x

<u>Ps</u> x

(Tstd) x (100 - B_w)

(Pstd)

(Ts)

1.0 m³/s (0°C, dry gas, 1 atm pressure)

100

(G) Mass Emission Rate

= 120

0.12

C_{1a} x Qstd =

g/s (0°C, dry gas, 1 atm pressure mg/s (0°C, dry gas, 1 atm pressure

7% O₂) 7% O₂)

 CO_2)

 CO_2)

AN7

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0176 m³

Average barometric

Average gas meter temp. (T_{M.2}):

39.3 °C

pressure (PBARO)

1018 hPa

312.5 K

Average pressure at meter

 $(P_{M,2})$

1018.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

0.8938 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .: Thimble No. used:

T485

Blank weight:

Total Particulate Weight

0.0127 g

Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):

0.01270 g

 $=M_{D1}/MV_4=$

0.014 g/m3 (0°C, dry gas,

1atm pressure)

;and C2 =

CO₂ Basis Average CO₂%:

12 %

0.0 %

14 mg/m³ (0°C, dry gas, 1atm pressure)

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.014 g/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

;and C_{c1} =

14 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

O2 Basis

Average O₂%:

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

2 g/m³ (0°C, dry gas, 1atm pressure,

7% O_2)

;and $C_{b1} =$

2000 mg/m³ (0°C, dry gas, 1atm pressure,

4 mL (=grams)

108)

(recorded on

Laboratory Form

(C) Moisture content

Silica Gel Number:

P33

V, =

9.9 g (from laboratory report)

Volume of Water Vapour Condensed $(V_{wc(std)}) =$

0.0053

Volume of Water Vapour Condensed (V_{wsq(std)}) =

0.0132

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsq(std)})$ $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

 $B_{ws} =$

2.03 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

=

1.161 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

2.40 m/s

(ii) Average of post-sampling velocities:

2.50 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

2.45 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

1.11 m³/s (stack conditions)

Qstd =

Qstack x

<u>Ps</u> x

(Tstd) x (100 - B_w)

(Pstd)

(Ts)

100

Qstd =

1.0 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

9-Feb-17

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.2887 m³

Average barometric

Average gas meter temp. (T_{M,2}):

35.3 °C

pressure (PBARO)

1018 hPa

308.5 K

Average pressure at meter

 $(P_{M,2})$

1018.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

1.1466 m³

(B) Metals concentration at standard conditions

Blank thimble No : Thimble No. used:

Blank weight: Metals Weight

0.000021 g

Final Metals Weight (Mp1): Metals Concentration (C1):

0

0.00002 g

 $=M_{p1}/MV_4=$

0.000018 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

0.018 mg/m³ (0°C, dry gas,

1atm pressure)

CO2 Basis Average CO₂%:

12 %

0.0 %

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.000018 g/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

0.018 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O2 Basis

Average O₂%:

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

 0.0025 g/m^3 (0°C, dry gas, 1atm pressure,

7% O_2)

;and $C_{b1} =$

2.5 mg/m³ (0°C, dry gas, 1atm pressure,

(C) Moisture content

Silica Gel Number:

G57

V_v =

12.9 g (from laboratory report)

20 mL (=grams) (recorded on

Volume of Water Vapour Condensed $(V_{wc(std)})$ = Volume of Water Vapour Condensed (V_{wsq(std)}) =

0.0267 0.0172 Laboratory Form 108)

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsq(std)}+V_{m(std)})$

 $B_{ws} =$

3.69 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.29 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

=

1.170 kg/m³ (stack conditions, wet)

- (E) Gas Velocities
- (i) Average of pre-sampling velocities:

2.40 m/s

(ii) Average of post-sampling velocities:

2.50 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

2.45 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

1.11 m³/s (stack conditions)

Qstd =

Qstack x

Ps x (Pstd)

(Tstd) × (100 - B_w)

Qstd =

1.0 m³/s (0°C, dry gas, 1 atm pressure)

(Ts)

(G) Mass Emission Rate

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK ONESTEEL HEXHAM

9-Feb-17 FINE PARTICULATE (PM10) TOTAL PARTICULATE HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	29.5 °C	302.7 K
Stack pressure (average)	1018 hPa	connection - MCMO1 - MCMO3
Stack gas velocity (average, stack conditions)	2.5 m/s	
Stack gas flowrate (stack conditions)	1.1 m ³ /s	
Stack gas flowrate (0 ⁰ C, dry gas, 1 atm pressure)	0.98 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	11:43 -	14:00
Fine Particulate (PM10) Mass	0.8 mg	eron versensitäättiä
Gas Volume Sampled	0.951 m ³	
Fine Particulate (PM10) Emission*1	0.84 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	0.82 mg/s	
Regulatory Limit	NA mg/m ³	
Total Particulate Testing		
Test Period	11:43 -	14:00
Total Particulate Mass	12.7 mg	40 SEGMENTERS
Gas Volume Sampled	0.894 m ³	
Total Particulate Emission*1	14 mg/m ³	
Total Particulate Mass Emission Rate*2	14 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	11:43 -	14:00
Hazardous Substances (Metals) Mass	0.021 mg	
Gas Volume Sampled	1.15 m ³	
Hazardous Substances (Metals) Emission*1	0.018 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.017 mg/s	
Regulatory Limit	NA	
Moisture Content (%)	2.9	-
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	
Notes *1 Emission concentration at Standard conditions of 0°C 1 ctm day and		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

01	HEA.	1	EVE	TAI	10

Contact

Colin Clarke

Client

AECOM Australia Pty Ltd

Address

Level 21, 420 George Street (PO BOX Q410, QVB Post Office SYDNEY NSW

SYDNEY NSW 2000

Telephone

02 8295 3600

Facsimile

02 8934 0001

Email

colin.clarke@aecom.com

Project

(Not specified) 60493017/2.1

Order Number Samples

12

LABORATORY DETAILS

Manager

Laboratory

Address

Facsimile

Email

Adam Atkinson

SGS Melbourne EH&S

10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone

Date Reported

+61395743200

+61395743399

Au.SampleReceipt.Melbourne@sgs.com

SGS Reference

Date Received

ME301905 R0 14 Feb 2017 24 Mar 2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(14420).

SIGNATORIES

Adam Atkinson **Business Manager**

Bharat Rana Chemist

Weiming Dai Inorganic Supervisor

MING

	Sa S	ple Number mple Matrix ample Date mple Name	ME301905.001 Air 09 Feb 2017 Metals No.1	ME301905,002 Other 09 Feb 2017 Metals No.3	ME301905,003 Other 09 Feb 2017 Metals No.4	ME301905.00 Other 09 Feb 2017 Metals No.5A
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02	USEPA M29 Method: EPA29	_FILT Te	sted: 7/3/2017			
	μg total	0.2	<0.2	. 1	-	-
Sb	μg total	0.2	0.2	-	-	
As Be	μg total	0.2	<0.2	-	-	(-)
Cd	µg total	0.2	13	-	-	
Cr	μg total	0.2	0.7	-	-	-
	μg total	0.2	<0.2	-	-	-
Co	µg total	0.2	<0.2	-	-	-
Cu	μg total	0.2	0.8	-	-	-
Pb	μg total	2	71		-	-
Mg	µg total	0.2	0.8	-	-	-
Mn	μg total	0.2	<0.2	-	-	-
Hg	μg total	0.2	0,3	-	-	
Ni .	µg total	0.2	<0.2	-	-	-
Se	µg total	0.2	<0.2		-	_
π	µg total	0.2	0.3	-		-
Sn	µg total	0.2	2.2	-	-	-
V Zn	µg total	0.2	1100		-	-
Metals in Impingers M29 ETC MA-1400.IMP.M2	9 06 (up total) Method: EPA					
OL		0.1	P Tested: 7/3/2	<0.1	0.3	-
Sb	μg total	0.1			0.3	<u>.</u>
As	µg total µg total	0.1	-	<0.1		
As Be	µg total µg total µg total	0.1	-	<0.1 <0.1	<0.1	-
As Be Cd	µg total µg total µg total µg total	0.1 0.1 0.1	-	<0.1 <0.1 <0.1	<0.1 <0.1	-
As Be Cd Cr	µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1	-	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8	-
As Be Cd Cr Co	µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1	-	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4	
As Be Cd Cr Co Cu	µg total µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1	-	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1	-
As Be Cd Cr Co Cu	µg total µg total µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1	
As Be Cd Cr Co Cu Pb	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330	- - - - - - -
As Be Cd Cr Co Cu Pb Mg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30	
As Be Cd Cr Co Cu Pb Mg Mn Hg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0	
As Be Cd Cr Co Cu Pb Mg Mn Hg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0 <0.1	
As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0 <0.1 2.9	- - - - - - - - - - -
As Be Cd Cr Co Cu Pb Mg Mn Hg Si	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0 <0.1 2.9 <0.1	
As Be Cd Cr Co Cu Pb Mg Mn Hg Si Se Ti Sn	µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0 <0.1 2.9 <0.1 <0.1	
As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se T1	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 1.8 0.4 <0.1 2.2 330 30 1.0 <0.1 2.9 <0.1 <0.1 0.9	

ME301905 R0

		mple Number Sample Matrix Sample Date Sample Name	ME301905,005 Other 09 Feb 2017 Metals No.5B	ME301905.006 Other 09 Feb 2017 Metals No.5C	ME301906.007 Other 09 Feb 2017 Metals No.8A	ME301905,008 Other 09 Feb 2017 Metals No.8B
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400			sted: 7/3/2017			
Sb	µg total	0.2		-	-	
As	μg total	0.2	-			
Be	μg total	0.2	-	-		•
Cd	μg total	0.2				
Cr	µg total	0.2	-	-		
Co	μg total	0.2	-			
Cu	μg total	0.2	-		-	
Pb	μg total	0.2	-			:
Mg	μg total	2				
Mn	μg total	0.2	-		-	
Hg	μg total	0.2		-	_	
Ni	μg total	0.2	-			
Se	μg total	0.2	-			
π	μg total	0.2				
Sn	μg total	0.2	-			· · · · · · · · · · · · · · · · · · ·
V	µg total	0.2	-	-		
Zn	μg total	0.2	-	-	-	-
zn Metals in Impingers M29 ETC MA-14 Sb	00.IMP.M29.06 (ug total) Method: EPA	29_METIMP	Tested: 28/2/20	17	-	•
Metals in Impingers M29 ETC MA-14	00.IMP.M29.06 (ug total) Method: EPA	29_METIMP 0.1	Tested: 28/2/20	117	<0.1	-
Metals in Impingers M29 ETC MA-14 Sb As	00.IMP.M29.06 (ug total) Method: EPA µg total µg total	29_METIMP 0.1 0.1	Tested: 28/2/20		<0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Se	00.IMP.M29.06 (ug total) Method: EPA μg total μg total μg total	29_METIMP 0.1 0.1 0.1	Tested: 28/2/20		<0.1 <0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Ge	00.IMP.M29.06 (ug total) Method: EPA µg total µg total µg total µg total µg total	29_METIMP 0.1 0.1 0.1 0.1 0.1	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Se Sc Cd	00.IMP.M29.06 (ug total) Method: EPA μg total μg total μg total μg total μg total μg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr	00.IMP.M29.06 (ug total) Method: EPA μg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr Co	00.IMP.M29.06 (ug total) Method: EPA μg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr Co	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr Co Cu Pb	00.IMP.M29.06 (ug total) Method: EPA μg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	-
Metals in Impingers M29 ETC MA-14 Sb As Se Cd Cr Co Cu Pb	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Metals in Impingers M29 ETC MA-14	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - -
Metals in Impingers M29 ETC MA-14 Sb As Se Cd Cr Co Cu Pb Ag An	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - -
Metals in Impingers M29 ETC MA-14 Sb As Se Cd Cr Co Cu Ob Mg Mn Hg Ni Se	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - -
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr Co Cu Pb Mg	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		- CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1	
Metals in Impingers M29 ETC MA-14 Sb As Se Cd Cr Co Cu Pb Mg Mn Hg Ni Se T	pg total pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		- CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1	
Metals in Impingers M29 ETC MA-14 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se T	pg total	29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 28/2/20		- CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1 CO.1	

	Sa S	ple Number mple Matrix ample Date mple Name	ME301905.009 Other 09 Feb 2017 Metals No.9	ME301905.010 Other 09 Feb 2017 Metals No.10	ME301905.011 Other 09 Feb 2017 Metals No.11	ME301905,012 Air 09 Feb 2017 Metals No.12
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA N	M29 Method: EPA29	FILT Te	sted: 7/3/2017			
vietais in Filters W25 ETC WA-1400, E.W25.02 GOET TO						<0.2
Sb	μg total	0,2	-		-	<0.2
As	μg total	0.2	-			<0.2
Ве	μg total	0.2				<0.2
Cd	μg total	0.2				0.5
Or .	μg total	0.2	•			<0.2
Co	μg total	0.2				<0.2
Cu	μg total	0.2	-	-		0.4
Pb	μg total	0.2	-	-	-	
Mg	µg total	2	•	-		34
Mn	μg total	0.2	-		-	0.7
Hg	μg total	0.2		-	-	0.3
Ni	µg total	0.2	.	-		0.2
Se	μg total	0.2	-	-		<0.2
П	μg total	0.2	-	-	-	<0.2
Sn	μg total	0.2		-		<0.2
V	μg total	0.2		9	-	2.3
	μg total	0.2	-	-	-	430
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug	total) Method: EPA	29_METIME	P Tested: 7/3/2	1	-	430
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug s sb	total) Method: EPA	29_METIMF	7/3/2 Tested: 7/3/2	2017		
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug Sb As	total) Method: EPA μg total μg total	0.1 0.1	Tested: 7/3/2 <0.1 <0.1	2017	-	-
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug Sb As Be	Method: EPA μg total μg total μg total	29_METIMF 0.1 0.1 0.1	Tested: 7/3/2 <0.1 <0.1 <0.1	2017		-
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug s Sb As Be Cd	Method: EPA µg total µg total µg total µg total µg total	29_METIMF 0.1 0.1 0.1 0.1 0.1	<pre>column = 1</pre>		-	-
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug s Sb As Be Cd Cr	Method: EPA μg total	0.1 0.1 0.1 0.1 0.1 0.1	<pre> Tested: 7/3/2</pre>		- - -	-
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<pre>co.1 co.1 co.1 co.1 co.1 co.1 co.1 co.1</pre>		- - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		- - - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb	pg total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		- - - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb	pg total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5		- - - - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb Mg Mn	pg total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 </td <td></td> <td>- - - - - - - -</td> <td></td>		- - - - - - - -	
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug state of the state	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 ><0.1 <0.1		- - - - - - -	
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug state of the state	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		- - - - - - - - - - - - - - - - - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb Mg Mn Hg	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2017	- - - - - - - - - - - - - - - - - - -	
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2017		
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2017		
Zn Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug statement) Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	py total	29_METIMF 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 7/3/2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	2017		

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job.

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY	(

FOOTNOTES _

IS LNR *	Insufficient sample for analysis. Sample listed, but not received. NATA accreditation does not cover the	LOR ↑↓ QFH	Limit of Reporting Raised or Lowered Limit of Reporting QC result is above the upper tolerance
	performance of this service.	QFL	QC result is below the lower tolerance
**	Indicative data, theoretical holding time exceeded.		The sample was not analysed for this analyte
		NVI	Not Validated

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

13017-0-P

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

14-Feb-17

Received: 10-Feb-17

Report To:

Cye Buckland

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T480	Filter	- 1	0.0008
T485	Filter		0.0127

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By: J. Camptell

Jason Campbell

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

13017-0-M

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

14-Feb-17

Received: 10-Feb-17

Report To:

Cye Buckland

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
G57	12.9	
P32	11.0	
P33	9.9	

NATA Accredited Laboratory 18079 Accredited for compliance with

ISO/IEC 17025 - Testing

Reported By:_

J. Campbell

Jason Campbell

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

This is the last page of the report

AECOM
AECOM Australia Pty Ltd
17 Warabrook Boulevard
Warabrook NSW 2304
PO Box 73
Hunter Region MC NSW 2310
Australia
T +61 2 4911 4900
F +61 2 4911 4999
www.aecom.com
ABN 20 093 846 925