


# 2nd Quarter Emissions Testing Report 2016

**OneSteel Recycling Hexham** 





NATA ACCREDITATION No. 2778 (14391) Accredited for compliance with ISO/IEC 17025 This document is issued in accordance with NATA's accreditation requirements. This document may not be reproduced except in full.

# 2nd Quarter Emissions Testing Report 2016

**OneSteel Recycling Hexham** 

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

#### AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

01-Aug-2016

Job No.: 60493017

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

# **Quality Information**

| Document    | 2nd Quarter Emissions Testing Report 2016 |                    |  |  |  |
|-------------|-------------------------------------------|--------------------|--|--|--|
| Ref         | 60493017                                  |                    |  |  |  |
| Date        | 01-Aug-2016                               |                    |  |  |  |
| Prepared by | Vilai Kelemete-Manu                       | Ja                 |  |  |  |
| Reviewed by | Chad Whitburn                             | Approved Signatory |  |  |  |

MU

## **Revision History**

| Devision | Povision Data | Authorised       |                                                                          |         |
|----------|---------------|------------------|--------------------------------------------------------------------------|---------|
|          |               | Name/Position    | Signature                                                                |         |
| 0        | 01-Aug-2016   | Report for Issue | Chad Whitburn<br>Associate Director - Compliance<br>Services Team Leader | all the |

# Table of Contents

| 1.0   | Introduction                  | 1  |
|-------|-------------------------------|----|
| 2.0   | Sampling Plane Requirements   | 3  |
| 3.0   | Methodology                   | 5  |
|       | 3.1 NATA Accredited Methods   | 5  |
| 4.0   | Sampling Location             | 7  |
|       | 4.1 Sampling Location Summary | 7  |
| 5.0   | 9                             |    |
| 6.0   | Results                       | 11 |
| Appen | ndix A                        |    |
|       | Field Sheets (17 pages)       | A  |
| Appen | ndix B                        |    |
|       | Laboratory Results            |    |
|       | (11 pages)                    | В  |
|       |                               |    |

#### List of Tables

| Table 1 | Criteria for Selection of Sampling Planes (AS 4323.1)                                   | 3  |
|---------|-----------------------------------------------------------------------------------------|----|
| Table 2 | AECOM NATA Endorsed Methods                                                             | 5  |
| Table 3 | Sampling Location Summary                                                               | 7  |
| Table 4 | Shredder Baghouse Emission Results Summary, 28 June 2016                                | 11 |
| Table 5 | Fine Particulate (PM10), Total Particulate and Hazardous Substance (Metals) Results, 28 |    |
|         | June 2016                                                                               | 12 |
| Table 6 | Hazardous Substances (Metals) Elemental Analysis Results, 28 June 2016                  | 13 |

# 1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Bag house Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 28 June 2016 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM<sub>10</sub>);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 11570-0-M & 11570-0-P:
  - Total Particulate (TP);
  - Fine Particulates (PM<sub>10</sub>); and
  - Moisture.
- SGS Leeder Consulting laboratory NATA accreditation number 14429, performed the following analysis detailed in report number M161422:
  - Hazardous Substances (Metals).

This page has been left blank intentionally.

# 2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

#### Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

| Type of flow disturbance                              | Minimum distance upstream from disturbance, diameters (D) | Minimum distance downstream from disturbance, diameters (D) |
|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|
| Bend, connection, junction, direction change          | >2D                                                       | >6D                                                         |
| Louvre, butterfly damper (partially closed or closed) | >3D                                                       | >6D                                                         |
| Axial fan                                             | >3D                                                       | >8D (see Note)                                              |
| Centrifugal fan                                       | >3D                                                       | >6D                                                         |

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

With the exception of point 'b', the sampling plane was in accordance with AS4323.1. The gas stream velocities at each sampling point were found to be 2.4 m/s. Please note that the bag house was not running at full capacity at the time of testing.

This page has been left blank intentionally.

# 3.0 Methodology

# 3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

| NSW EPA Approved<br>Methods | USEPA Methods                                                                            | Method Title                                                                                      |
|-----------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| AS4323.1<br>(NSW EPA TM-1)  | USEPA (2000) Method 1                                                                    | Selection of sampling positions                                                                   |
| AS4323.2<br>(NSW EPA TM-15) | USEPA (2000) Method 5 under approved circumstances                                       | Determination of total particulate matter –<br>isokinetic manual sampling – gravimetric<br>method |
| NSW EPA TM-2                | USEPA (2000) Method 2 or 2C or<br>USEPA (1999) Method 2F or 2G or 2H<br>(as appropriate) | Determination of stack gas velocity and volumetric flow rate (type s pitot tube)                  |
| NSW EPA TM-22               | USEPA (2000) Method 4                                                                    | Determination of moisture content in stack gases                                                  |
| NSW EPA TM-23               | USEPA (2000) Method 3                                                                    | Gas analysis for the determination of dry molecular weight                                        |
| NSW EPA OM-5                | USEPA (1997) Method 201 or 201A (as appropriate)                                         | Determination of PM <sub>10</sub> emissions                                                       |
| NSW EPA TM-12,13<br>and 14  | USEPA Method 29                                                                          | Determination of metal emissions from stationary sources                                          |

Table 2 AECOM NATA Endorsed Methods

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

This page has been left blank intentionally.

# 4.0 Sampling Location

# 4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 28 June 2016.

#### Table 3 Sampling Location Summary

| Discharge Description                       | Shredder Baghouse Stack (EPL Point 1) |
|---------------------------------------------|---------------------------------------|
| Duct Shape                                  | Circular                              |
| Construction Material                       | Metal                                 |
| Duct Diameter (mm)                          | 760                                   |
| Minimum No. Sampling Points                 | 12                                    |
| Sampling Ports                              | 2                                     |
| Min. Points/Traverse                        | 6                                     |
| Disturbance                                 | No                                    |
| Distance from Upstream Disturbance          | 6.6D                                  |
| Type of Disturbance                         | Bend                                  |
| Distance from Downstream Disturbance        | 2.6D                                  |
| Type of Disturbance                         | Stack Exit                            |
| Ideal Sampling Location                     | Yes <sup>2</sup>                      |
| Correction Factors Applied                  | No                                    |
| Total No. Points Sampled                    | 12                                    |
| Points/Traverse                             | 6                                     |
| Sampling Performed to Standard <sup>1</sup> | Yes <sup>2</sup>                      |

<sup>1</sup> AS 4323.1 Section 4.1

<sup>2</sup> The sampling location was ideal in terms of flow disturbances, but did not comply with AS 4323.1 point b) as the corrected velocity of the gas at all sampling points was found to be 2.4 m/s (minimum 3m/s).

D = Diameters

This page has been left blank intentionally.

# 5.0 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

This page has been left blank intentionally.

# 6.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

| Parameter                                                 | Emission<br>Concentration<br>(EPL Point 1) | Emission<br>Concentration Limit |  |  |
|-----------------------------------------------------------|--------------------------------------------|---------------------------------|--|--|
| Total Particulate (TP) (mg/m <sup>3</sup> )               | 0.78                                       | 100                             |  |  |
| Fine Particulate (PM <sub>10</sub> ) (mg/m <sup>3</sup> ) | 0.5                                        | NA                              |  |  |
| Lead (mg/m <sup>3</sup> )                                 | 0.008                                      | 5.0                             |  |  |
| Mercury (mg/m <sup>3</sup> )                              | <0.0004                                    | 1.0                             |  |  |
| Total Hazardous Substances (Metals) (mg/m <sup>3</sup> )  | 0.017                                      | NA                              |  |  |

Results from testing conducted on EPL Point 1 on 28 June 2016 are below the regulatory limits listed in EPL 5345.

ndition

| Sampling Conditions.                              |      |                   |       |   |
|---------------------------------------------------|------|-------------------|-------|---|
| Stack internal diameter at test location          | 760  | mm                |       |   |
| Stack gas temperature (average)                   | 13.2 | °C                | 286.4 | к |
| Stack pressure (average)                          | 1023 | hPa               |       |   |
| Stack gas velocity (average, stack conditions)    | 2.4  | m/s               |       |   |
| Stack gas flowrate (stack conditions)             | 1.1  | m³/s              |       |   |
| Stack gas flowrate (0°C, dry gas, 1 atm pressure) | 1    | m <sup>3</sup> /s |       |   |
| Fine Particulate (PM <sub>10</sub> ) Testing      |      |                   |       |   |
|                                                   |      |                   |       |   |

Table 5 Fine Particulate (PM<sub>10</sub>), Total Particulate and Hazardous Substance (Metals) Results, 28 June 2016

| Stack gas velocity (average, stack conditions)                        | 2.4   | m/s               |       |
|-----------------------------------------------------------------------|-------|-------------------|-------|
| Stack gas flowrate (stack conditions)                                 | 1.1   | m³/s              |       |
| Stack gas flowrate (0°C, dry gas, 1 atm pressure)                     | 1     | m <sup>3</sup> /s |       |
| Fine Particulate (PM <sub>10</sub> ) Testing                          |       |                   |       |
| Test Period                                                           | 10:38 | -                 | 12:42 |
| Fine Particulate (PM <sub>10</sub> ) Mass                             | 0.5   | mg                |       |
| Gas Volume Sampled                                                    | 1.00  | m <sup>3</sup>    |       |
| Fine Particulate (PM <sub>10</sub> ) Emission* <sup>1</sup>           | 0.5   | mg/m <sup>3</sup> |       |
| Fine Particulate (PM <sub>10</sub> ) Mass Emission Rate* <sup>2</sup> | 0.52  | mg/s              |       |
| Regulatory Limit                                                      | NA    |                   |       |
| Total Particulate Testing                                             |       |                   |       |
| Test Period                                                           | 10:38 | -                 | 12:42 |
| Total Particulate Mass                                                | 0.8   | mg                |       |
| Gas Volume Sampled                                                    | 1.03  | m <sup>3</sup>    |       |
| Total Particulate Emission*1                                          | 0.78  | mg/m <sup>3</sup> |       |
| Total Particulate Mass Emission Rate*2                                | 0.81  | mg/s              |       |
| Regulatory Limit                                                      | 100   | mg/m <sup>3</sup> |       |
| Hazardous Substances (Metals) Testing                                 |       |                   |       |
| Test Period                                                           | 10:38 | -                 | 12:42 |
| Hazardous Substances (Metals) Mass                                    | 0.021 | mg                |       |
| Gas Volume Sampled                                                    | 1.26  | m <sup>3</sup>    |       |
| Hazardous Substances (Metals) Emission*1                              | 0.017 | mg/m <sup>3</sup> |       |
| Hazardous Substances (Metals) Mass Emission Rate*2                    | 0.018 | mg/s              |       |
| Regulatory Limit                                                      | NA    |                   |       |
| Moisture Content (%)                                                  | 1.3   |                   |       |
| Gas Density (dry at 1 atmosphere)                                     | 1.29  | kg/m <sup>3</sup> |       |
| Dry Molecular Weight                                                  | 28.8  | g/g-mole          |       |

Notes \*1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas \*2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q<sub>std</sub> in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

#### Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 28 June 2016

| Sample                        | Total<br>Particulate<br>Metals (mg) | Total<br>Particulate<br>Metals<br>(mg/m <sup>3</sup> ) | Total<br>Gaseous<br>Metals (mg) | Total<br>Gaseous<br>Metals<br>(mg/m <sup>3</sup> ) | Total<br>Oxidisable<br>Mercury (mg) | Total<br>Oxidisable<br>Mercury<br>(mg/m <sup>3</sup> ) | Total (mg) | Total (mg/m³) | Mass<br>Emission Rate<br>(mg/s) |
|-------------------------------|-------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------------------------------|------------|---------------|---------------------------------|
| Antimony                      | <0.0002                             | <0.00016                                               | <0.0001                         | <0.0008                                            |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Arsenic                       | <0.0002                             | <0.00016                                               | <0.0001                         | <0.0008                                            |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Beryllium                     | <0.0002                             | <0.00016                                               | <0.0001                         | <0.0008                                            |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Cadmium                       | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Chromium                      | 0.0002                              | 0.00016                                                | 0.013                           | 0.01                                               |                                     |                                                        | 0.01       | 0.008         | 0.0083                          |
| Cobalt                        | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Copper                        | 0.0011                              | 0.00088                                                | 0.0019                          | 0.0015                                             |                                     |                                                        | 0.003      | 0.0024        | 0.0025                          |
| Lead                          | 0.011                               | 0.0088                                                 | 0.0026                          | 0.0021                                             |                                     |                                                        | 0.01       | 0.008         | 0.0083                          |
| Magnesium                     | <0.045                              | <0.036                                                 | <0.033                          | <0.026                                             |                                     |                                                        | <0.002     | <0.0016       | <0.0017                         |
| Manganese                     | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Mercury                       | <0.0002                             | <0.00016                                               | <0.0001                         | <0.0008                                            | <0.0001                             | <0.0008                                                | <0.0005    | <0.0004       | <0.00041                        |
| Nickel                        | 0.0003                              | 0.00024                                                | 0.00035                         | 0.00028                                            |                                     |                                                        | 0.0007     | 0.00056       | 0.00058                         |
| Selenium                      | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Thallium                      | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Tin                           | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Vanadium                      | <0.0005                             | <0.0004                                                | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Zinc                          | 0.018                               | 0.014                                                  | 0.0014                          | 0.0011                                             |                                     |                                                        | 0.02       | 0.016         | 0.017                           |
| Total<br>Hazardous<br>Metals* | 0.012                               | 0.0092                                                 | 0.016                           | 0.012                                              | <0.0001                             | <0.00008                                               | 0.021      | 0.017         | 0.017                           |
| Total Metals                  | 0.031                               | 0.024                                                  | 0.019                           | 0.015                                              |                                     |                                                        | 0.044      | 0.035         | 0.036                           |

\* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

2nd Quarter Emissions Testing Report 2016 Commercial-in-Confidence

This page has been left blank intentionally.

# Appendix A

# Field Sheets (17 pages)

# Appendix A Field Sheets (17 pages)



Q4AN(EV)-332-FM31

| OneSteel | Hexham |
|----------|--------|

AECOM's Project Number: 60493017

Emission Source: Shredder Stack

Date Sampled: 28-Jun-16

| ANALYTE(S)                    | METHOD                   |
|-------------------------------|--------------------------|
| Fine Particulate (PM10)       | NSW EPA OM - 5           |
| Total Particulate             | NSW EPA TM - 15          |
| Hazardous Substances (Metals) | NSW EPA TM - 12, 13 & 14 |

## Observations made during testing period:

Test paused whilst the plant was shutdown for repair, and restarted again once the repairs had been made, and the plant was operational

Sampling Performed By:

Vilai Kelemete-Manua

Dylan Turnbull



Q4AN(EV)-332-FM31

## **STACK ANALYSIS - PRE-SAMPLING**

Date:28-Jun-16Client:OneSteel HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

| Measurement/Observations     |                                        |                                       |                                                 |                          |  |  |  |  |
|------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------|--|--|--|--|
| Stack Inter                  | nal Dimensions:                        | · · · · · · · · · · · · · · · · · · · |                                                 |                          |  |  |  |  |
| Diameter<br>OR               | 760<br>Length                          | mm<br>Width                           | Cross Sectional Area                            | 0.45 m <sup>2</sup>      |  |  |  |  |
| Length/Wic                   |                                        | WIGUI                                 | Minimum No. of                                  |                          |  |  |  |  |
| Equivalent                   | · · ·                                  | mm                                    | sampling points=                                | 12                       |  |  |  |  |
|                              |                                        |                                       |                                                 | I 4 <u>.</u>             |  |  |  |  |
| Distance fron<br>nearest dis | om sampling plane to<br>turbances:     |                                       | Total No. of sampling<br>No. of sampling traver | PM2.5/10= 12             |  |  |  |  |
| Upstream (                   | m) = 5                                 |                                       | sampled =                                       | 2                        |  |  |  |  |
| No. Diamet                   |                                        |                                       |                                                 | PM2.5/10= 2              |  |  |  |  |
|                              | stream Disturbance:                    | Fan Entry                             | No. of sampling points                          |                          |  |  |  |  |
| Downstrea                    |                                        | i oni mini y                          | traverse/port =                                 | 6                        |  |  |  |  |
| No. Diamet                   |                                        |                                       |                                                 | PM2.5/10= 6              |  |  |  |  |
|                              | wn Stream Disturbance:                 | Stack Exit                            |                                                 |                          |  |  |  |  |
|                              |                                        |                                       | Exclusion of any samp                           | le point                 |  |  |  |  |
| Position of                  | each sampling point, for e             | each traverse                         | numbers - comments:                             |                          |  |  |  |  |
|                              | ocon oumpany point, for t              |                                       | or our our officients.                          |                          |  |  |  |  |
|                              |                                        |                                       |                                                 |                          |  |  |  |  |
|                              | А                                      | В                                     | PM10/2.5 A                                      | PM2.5/10 B               |  |  |  |  |
| No.                          | Distance from wall                     | S-type Pitot distances                | Distance from wall                              | S-Type Pitot distances   |  |  |  |  |
| 1                            | 33                                     | 3                                     | 33                                              | 3                        |  |  |  |  |
| 2                            | 111                                    | 81                                    | 111                                             | 81                       |  |  |  |  |
| 3                            | 225                                    | 195                                   | 225                                             | 195                      |  |  |  |  |
| 4                            | 535                                    | 505                                   | 535                                             | 505                      |  |  |  |  |
| 5                            | 649                                    | 619                                   | 649                                             | 619                      |  |  |  |  |
| 6                            | 727                                    | 697                                   | 727                                             | 697                      |  |  |  |  |
| 7                            |                                        | ····                                  |                                                 |                          |  |  |  |  |
| 8                            |                                        |                                       |                                                 |                          |  |  |  |  |
| 9                            |                                        |                                       |                                                 |                          |  |  |  |  |
| 10                           |                                        |                                       | Check of total points a                         | igainst                  |  |  |  |  |
| 11                           |                                        |                                       | minimum, (yes/no) - co                          | omments:                 |  |  |  |  |
| 12                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 13                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 14                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 15                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 16                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 17                           | ······································ |                                       |                                                 |                          |  |  |  |  |
| 18                           |                                        |                                       |                                                 |                          |  |  |  |  |
| 19                           | · · · · · · · · · · · · · · · · · · ·  |                                       | General Comments:                               |                          |  |  |  |  |
| 20                           |                                        |                                       | 1                                               |                          |  |  |  |  |
|                              | 1/1                                    |                                       | - AF-                                           | and State Manual Andrews |  |  |  |  |
| Signed:                      | K                                      |                                       | Checked:                                        | ~                        |  |  |  |  |
| L                            |                                        |                                       | <b>.</b>                                        |                          |  |  |  |  |

Q4AN(EV)-332-FM31

## STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:28-Jun-16Client:OneSteel HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

| Sampling time start:                           | 10:31        | Sampling port No | 0.: | 1                         |   |                            |   |
|------------------------------------------------|--------------|------------------|-----|---------------------------|---|----------------------------|---|
| Measurement No.                                | Time sampled | CO (ppm). (dry)  |     | O <sub>2</sub> (%), (dry) |   | CO <sub>2</sub> (%), (dry) |   |
| 1                                              | 10:31        | 0                |     | 20.9                      |   | 0.0                        |   |
| 2                                              | 10:32        | 0                |     | 20.9                      |   | 0.0                        |   |
| 3                                              | 10:33        | 0                |     | 20.9                      | ĺ | 0.0                        |   |
| 4                                              | 10:34        | 0                |     | 20.9                      |   | 0.0                        |   |
| 5                                              | 10:35        | 0                |     | 20.9                      |   | 0.0                        |   |
| 6                                              | 10:36        | 0                |     | 20.9                      |   | 0.0                        |   |
| 7                                              | 10:37        | 0                |     | 20.9                      | T | 0.0                        |   |
| 8                                              | 10:38        | 0                |     | 20.9                      |   | 0.0                        |   |
|                                                | Averages:    | 0.0              | ppm | 20.9                      | % | 0.0                        | % |
| Moisture content (M3)<br>Moisture percentage ( |              |                  |     |                           |   |                            |   |

Measurements

| CO:               | 0.0000 %,(dry)                    | N <sub>2</sub> :       | 79.1 %,(dry)                          |  |
|-------------------|-----------------------------------|------------------------|---------------------------------------|--|
| CO <sub>2</sub> : | 0.0 %,(dry)                       | O <sub>2</sub> :       | 20.9 %,(dry)                          |  |
| Gas Com           | positions converted to wet basis: |                        | · · · · · · · · · · · · · · · · · · · |  |
| co:               | 0.0000 %,(wet)                    | N <sub>2</sub> :       | 77.2 %,(wet)                          |  |
| CO2:              | 0.0 %,(wet)                       | O <sub>2</sub> :       | 20.4 %,(wet)                          |  |
| H₂O:              | 2.40 %(=M2)                       |                        |                                       |  |
| Therefore         | , stack gas density (GD) =        | 1.28 kg/m <sup>3</sup> | (0°C, wet, 1 atm pressure)            |  |
| Therefore         | , stack gas density (GD) =        | 1.29 kg/m <sup>3</sup> | (0°C, dry, 1 atm pressure)            |  |

Q4AN(EV)-332-FM31

## **STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING**

Date: 28-Jun-16 OneSteel Hexham Client: AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack Test 1: Fine Particulate (PM10) Test 2: Total Particulate Test 3: Hazardous Substances (Metals)

| Sampling time start:  | 12:35        | Sampling port No. | .:  | 1                         |   |                            |   |
|-----------------------|--------------|-------------------|-----|---------------------------|---|----------------------------|---|
| Measurement No.       | Time sampled | CO (ppm). (dry)   |     | O <sub>2</sub> (%), (dry) |   | CO <sub>2</sub> (%), (dry) |   |
| 1                     | 12:35        | 0                 | 1   | 20.9                      |   | 0.0                        |   |
| 2                     | 12:36        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 3                     | 12:37        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 4                     | 12:38        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 5                     | 12:39        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 6                     | 12:40        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 7                     | 12:41        | 0                 |     | 20.9                      |   | 0.0                        |   |
| 8                     | 12:42        | 0                 | T   | 20.9                      |   | 0.0                        |   |
|                       | Averages:    | 0.0               | ppm | 20.9                      | % | 0.0                        | % |
| Moisture content (M3) | : 0.99       |                   |     |                           |   |                            |   |
| Moisture percentage ( | M2): 1.21    | %                 |     |                           |   |                            |   |

#### Measurements

| CO:               | 0.0000 %,(dry)                    | N <sub>2</sub> :       | 79.1 %,(dry)               |  |
|-------------------|-----------------------------------|------------------------|----------------------------|--|
| CO <sub>2</sub> : | 0.0 %,(dry)                       | O <sub>2</sub> :       | 20.9 %,(dry)               |  |
| Gas Com           | positions converted to wet basis: |                        |                            |  |
| CO:               | 0.0000 %,(wet)                    | N <sub>2</sub> :       | 78.1 %,(wet)               |  |
| CO <sub>2</sub> : | 0.0 %,(wet)                       | O <sub>2</sub> :       | 20.6 %,(wet)               |  |
| H₂O:              | 1.21 %(=M2)                       |                        |                            |  |
| Therefore         | , stack gas density (GD) =        | 1.28 kg/m <sup>3</sup> | (0°C, wet, 1 atm pressure) |  |
| Therefore         | , stack gas density (GD) =        | 1.29 kg/m <sup>3</sup> | (0°C, dry, 1 atm pressure) |  |



Q4AN(EV)-332-FM31

#### Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

 Date:
 28-Jun-16

 Client:
 OneSteel Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Stack

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Enter Stack

| Time :            | 10:30         | Barometric Pr   | essure :    | 1023                                  | hPa                |
|-------------------|---------------|-----------------|-------------|---------------------------------------|--------------------|
| Page No. :        | 1 of 1        | Pitot Correctio | on Factor : | 0.84                                  |                    |
| Sampling Port No: | 1 to 2        | Stack Gas De    | ensity:     | 1.28                                  | kg/m <sup>3</sup>  |
| Pitot Tube Type : | S             |                 |             |                                       | (0 °C, Wet, 1 Atm) |
|                   | ·····         | Max.            |             | 1                                     |                    |
|                   | Distance      | Differential    | +           |                                       |                    |
| Sampling Position | from far wall | Pressure        | Max Temp.   | Max Temp. (Ts)                        |                    |
| No.               | (mm)          | ΔP, kilo        | °C          | к                                     | (Vs) m/s           |
|                   | (             | Pascals         |             |                                       |                    |
| 1/1               | 3             | 0.005           | 13.5        | 286.7                                 | 2.4                |
| 1/2               | 81            | 0.005           | 13.0        | 286.2                                 | 2.4                |
| 1/3               | 195           | 0.005           | 13.2        | 286.4                                 | 2.4                |
| 1/4               | 505           | 0.005           | 13.4        | 286.6                                 | 2.4                |
| 1/5               | 619           | 0.005           | 13.5        | 286.7                                 | 2.4                |
| 1/6               | 697           | 0.005           | 13.5        | 286.7                                 | 2.4                |
|                   |               |                 |             |                                       |                    |
| 2/1               | 3             | 0.005           | 12.9        | 286.1                                 | 2.4                |
| 2/2               | 81            | 0.005           | 13.1        | 286.3                                 | 2.4                |
| 2/3               | 195           | 0.005           | 13.3        | 286.5                                 | 2.4                |
| 2/4               | 505           | 0.005           | 13.5        | 286.7                                 | 2.4                |
| 2/5               | 619           | 0.005           | 13.4        | 286.6                                 | 2.4                |
| 2/6               | 697           | 0.005           | 13.5        | 286.7                                 | 2.4                |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             | · · · · · · · · · · · · · · · · · · · |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 | <u></u>     |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 |             |                                       |                    |
|                   |               |                 | 40.0        | 000.5                                 |                    |
| Average           |               |                 | 13.3        | 286.5                                 | 2.4                |

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -0.5 mm 1022.95 hPa



#### STACK ANALYSIS

#### SAMPLING OF FINE PARTICULATE (PM10) Date: 28-Jun-16

| Client: OneSteel He        | xham            |          |                       |           |               |                                   |
|----------------------------|-----------------|----------|-----------------------|-----------|---------------|-----------------------------------|
| AECOM's Project No:        |                 | 60493017 |                       |           |               |                                   |
| Stack Description No.:     | Shredder Stack  |          |                       |           |               |                                   |
| Sample Nozzle No.:         | fine10          |          | Sample Nozzle Area    | a (An):   | 5.74          | x 10 <sup>-5</sup> m <sup>2</sup> |
| Sampling Port No.:         | 1 to 2          |          | Thimble No:           | • •       | T409          | -                                 |
| Page No:                   | 1 of 1          |          | Blank thimble No:     |           | 0             |                                   |
| Leak Check (Pre-Sampli     | ng)             |          | Leak Check (Post      | Sampling  | )             |                                   |
| Meter start: 95.992        | 8 Meter finish: | 95.9928  | Meter start:          | 97.0890   | Meter finish: | 97.0890                           |
| Time start: 10:1           | 5 Time finish:  | 10:16    | Time start:           | 12:45     | Time finish:  | 12:46                             |
| Therefore, leakage rate =  | no leak L       | /min     | Therefore, leakage    | rate =    | no leak       | L/min                             |
| (>0.1 l/min. is unacceptab | e)              |          | (>0.1 l/min. is unacc | ceptable) |               |                                   |
| Repeat:<br>Comments:       |                 |          | Repeat:<br>Comments:  |           |               |                                   |

#### Sampling Record Table

| Barometric Pressure:            | 1023 hPa (start); |             | 1023 hPa (finish) |
|---------------------------------|-------------------|-------------|-------------------|
| Meter start:                    | 95.9952           | Time start: | 10:38             |
| Meter correction factor (GMf) : |                   | 1.0000      |                   |

|                | Stopwatch<br>Time at | Distance      | Isokinetic   |                  |              | Impinger     | Flowrate |
|----------------|----------------------|---------------|--------------|------------------|--------------|--------------|----------|
| Sampling       | Sampling             | from far wall | Flowrate     | Meter Inlet      | Meter Outlet | Train Outlet | Attained |
| Position No.   | Position             | (mm)          | (L/min)      | Temp. (°C)       | Temp. (°C)   | Temp (°C)    | (Y/N)    |
| 1/1            | 0:06:30              | 33            | 12.9         | 23.0             | 16.0         |              | Yes      |
| 1/2            | 0:06:30              | 111           | 12.9         | 27.0             | 18.0         |              | Yes      |
| 1/3            | 0:06:30              | 225           | 12.9         | 30.0             | 20.0         |              | Yes      |
| 1/4<br>1/5     | 0:06:30              | 535<br>649    | 12.9         | 34.0             | 21.0         |              | Yes      |
| 1/6            | 0:06:30              | 727           | 12.9<br>12.9 | 36.0<br>37.0     | 23.0<br>24.0 |              | Yes      |
| 1/0            | 0.00.30              | 121           | 12.9         | 37.0             | 24.0         |              | Yes      |
| 2/1            | 0:06:30              | 33            | 12.9         | 38.0             | 25.0         |              | Yes      |
| 2/2            | 0:06:30              | 111           | 12.9         | 30.0             | 25.0         |              | Yes      |
| 2/3            | 0:06:30              | 225           | 12.9         | 33.0             | 25.0         |              | Yes      |
| 2/4            | 0:06:30              | 535           | 12.9         | 35.0             | 25.0         |              | Yes      |
| 2/5            | 0:06:30              | 649           | 12.9         | 36.0             | 25.0         |              | Yes      |
| 2/6            | 0:06:30              | 727           | 12.9         | 36.0             | 25.0         |              | Yes      |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  | h            |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
| <b> </b>       |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               |              |                  |              |              |          |
|                |                      |               | ~            |                  |              |              |          |
| Averages       |                      |               |              | 32.9             | 22.7         | no result    |          |
| Meter Finish:  |                      | 97.0883       |              | Time Finish:     |              | 12:42        |          |
| Total Condens: | ate collected:       |               | ml           | Silica gel No(s) | used:        | L18          |          |



#### STACK ANALYSIS

#### SAMPLING OF TOTAL PARTICULATE

| Date: 28-Jun-10<br>Client: OneSteel He:<br>AECOM's Project No:<br>Stool: Description No: | kham                 | 60493017 |                         |         |                    |                                   |
|------------------------------------------------------------------------------------------|----------------------|----------|-------------------------|---------|--------------------|-----------------------------------|
| Stack Description No.:<br>Sample Nozzle No.:                                             | Shredder Stack<br>S6 |          | Sample Nozzle Area (    | (An)·   | 9.25               | x 10 <sup>-5</sup> m <sup>2</sup> |
| Sampling Port No.:                                                                       | 1 to 2               |          | Thimble No:             | (****). | T433               |                                   |
| Page No:                                                                                 | 1 of 1               |          | Blank thimble No:       |         |                    |                                   |
| Leak Check (Pre-Sampli                                                                   | ng)                  |          | Leak Check (Post Sa     | ampling | )                  |                                   |
|                                                                                          | B Meter finish:      |          | •••                     | 34.3368 | ,<br>Meter finish: | 384.3368                          |
| Time start: 10:13                                                                        | 7 Time finish:       | 10:18    | Time start:             | 12:46   | Time finish:       | 12:47                             |
| Therefore, leakage rate =                                                                | no leak L/r          | nin      | Therefore, leakage rai  | te =    | no leak            | L/min                             |
| (>0.1 l/min. is unacceptabl                                                              | e)                   |          | (>0.1 l/min. is unacces | ptable) |                    |                                   |
| Repeat:<br>Comments:                                                                     |                      |          | Repeat:<br>Comments:    |         |                    |                                   |

#### Sampling Record Table

| Barometric Pressure:            | 1023 hPa ( | start);     | 1023 hPa (finish) |
|---------------------------------|------------|-------------|-------------------|
| Meter start:                    | 383.2424   | Time start: | 10:38             |
| Meter correction factor (GMf) : |            | 1.0100      |                   |

| l T            | Stopwatch                             |               |            |                  | 1            |              |          |
|----------------|---------------------------------------|---------------|------------|------------------|--------------|--------------|----------|
|                | Time at                               | Distance      | Isokinetic |                  |              | Impinger     | Flowrate |
| Sampling       | Sampling                              | from far wall | Flowrate   | Meter Inlet      | Meter Outlet | Train Outlet | Attained |
| Position No.   | Position                              | (mm)          | (L/min)    | Temp. (°C)       | Temp. (°C)   | Temp (°C)    | (Y/N)    |
| 1/1            | 0:06:30                               | 33            | 13.8       | 19.0             | 14.0         |              | Yes      |
| 1/2            | 0:13:00                               | 111           | 13.8       | 23.0             | 15.0         |              | Yes      |
| 1/3            | 0:19:30                               | 225           | 13.8       | 27.0             | 15.0         |              | Yes      |
| 1/4            | 0:26:00                               | 535           | 13.8       | 30.0             | 16.0         |              | Yes      |
| 1/5            | 0:32:30                               | 649           | 13.8       | 32.0             | 17.0         |              | Yes      |
| 1/6            | 0:39:00                               | 727           | 13.8       | 33.0             | 18.0         |              | Yes      |
|                |                                       |               |            |                  |              |              |          |
| 2/1            | 0:45:30                               | 33            | 13.8       | 34.0             | 19.0         |              | Yes      |
| 2/2            | 0:52:00                               | 111           | 13.8       | 26.0             | 20.0         |              | Yes      |
| 2/3            | 0:58:30                               | 225           | 13.8       | 30.0             | 20.0         |              | Yes      |
| 2/4            | 1:05:00                               | 535           | 13.8       | 33.0             | 20.0         |              | Yes      |
| 2/5            | 1:11:30                               | 649           | 13.8       | 34.0             | 20.0         |              | Yes      |
| 2/6            | 1:18:00                               | 727           | 13.8       | 34.0             | 20.0         |              | Yes      |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
| ł.             | · · · · · · · · · · · · · · · · · · · |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
| ·              |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
|                |                                       |               |            |                  |              |              |          |
| Averages       |                                       |               |            | 29.6             | 17.8         | no result    |          |
| Meter Finish:  |                                       | 384.3354      |            | Time Finish:     |              | 12:42        |          |
| Total Condensi | ate collected:                        |               |            | Silica gel No(s) | used:        | DT351        |          |



#### STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

| Date: 28-Jun-1<br>Client: OneSteel He<br>AECOM's Project No:                   | xham                                             | 60493017 |                                                           |        |                                    |                       |
|--------------------------------------------------------------------------------|--------------------------------------------------|----------|-----------------------------------------------------------|--------|------------------------------------|-----------------------|
| Stack Description No.:<br>Sample Nozzle No.:<br>Sampling Port No.:<br>Page No: | Shredder Stack<br>G12<br>1 to 2<br>1 of 1        |          | Sample Nozzle Area (A<br>Thimble No:<br>Blank thimble No: | Nn):   | 11.31<br>0                         | x 10 <sup>-5</sup> m² |
|                                                                                | n <b>g)</b><br>0 Meter finish:<br>9 Time finish: |          |                                                           | 9.3892 | )<br>Meter finish:<br>Time finish: | 189.3892<br>12:48     |
| Therefore, leakage rate =                                                      | no leak L                                        | _/min    | Therefore, leakage rate                                   | e =    | no leak                            | L/min                 |
| (>0.1 l/min. is unacceptabl                                                    | e)                                               |          | (>0.1 l/min. is unaccept                                  | table) |                                    |                       |
| Repeat:<br>Comments:                                                           |                                                  |          | Repeat:<br>Comments:                                      |        |                                    |                       |

#### Sampling Record Table

| Barometric Pressure:            | 1023 hPa ( | start); |             | 1023 hPa (finish) |
|---------------------------------|------------|---------|-------------|-------------------|
| Meter start:                    | 188.0578   |         | Time start: | 10:38             |
| Meter correction factor (GMf) : |            | 1.0100  |             |                   |

| 7             | <u>August</u>  |               |            |              | 7            |           |          |
|---------------|----------------|---------------|------------|--------------|--------------|-----------|----------|
|               | Stopwatch      |               |            |              |              | 1         |          |
|               | Time at        | Distance      | Isokinetic | Matan Inlat  |              | Impinger  | Flowrate |
| Sampling      | Sampling       | from far wali | Flowrate   | Meter Inlet  | Meter Outlet |           | Attained |
| Position No.  | Position       | (mm)          | (L/min)    | Temp. (°C)   | Temp. (°C)   | Temp (°C) | (Y/N)    |
| 1/1           | 0:06:30        | 33            | 16.8       | 18.0         | 12.0         |           | Yes      |
| 1/2           | 0:13:00        | 111           | 16.8       | 21.0         | 13.0         |           | Yes      |
| 1/3           | 0:19:30        | 225           | 16.8       | 24.0         | 14.0         |           | Yes      |
| 1/4           | 0:26:00        | 535           | 16.8       | 27.0         | 15.0         |           | Yes      |
| 1/5           | 0:32:30        | 649           | 16.8       | 28.0         | 16.0         |           | Yes      |
| 1/6           | 0:39:00        | 727           | 16.8       | 29.0         | 16.0         |           | Yes      |
|               |                |               |            |              |              |           |          |
| 2/1           | 0:45:30        | 33            | 16.9       | 30.0         | 17.0         |           | Yes      |
| 2/2           | 0:52:00        | 111           | 16.8       | 24.0         | 18.0         |           | Yes      |
| 2/3           | 0:58:30        | 225           | 16.8       | 27.0         | 18.0         |           | Yes      |
| 2/4           | 1:05:00        | 535           | 16.8       | 30.0         | 19.0         |           | Yes      |
| 2/5           | 1:11:30        | 649           | 16.8       | 30.0         | 19.0         |           | Yes      |
| 2/6           | 1:18:00        | 727           | 16.8       | 31.0         | 19.0         |           | Yes      |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               | ••••••         |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              | []           |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
| 1             |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              | <u> </u>     |           |          |
|               |                |               |            |              | ļ            |           |          |
|               |                |               |            |              |              |           |          |
|               |                |               |            |              | ļĮ           |           |          |
| ····          |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
| ]             |                |               |            |              |              |           |          |
|               |                |               |            |              |              |           |          |
| Averages      |                |               |            | 26.6         | 16.3         | no result |          |
| Aeter Finish: |                | 189.3870      |            | Time Finish: |              | 12:42     |          |
|               | ate collected: | 2             |            | tano i naon. |              | 99        |          |



Q4AN(EV)-332-FM31

#### Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

 Date:
 28-Jun-16

 Client:
 OneSteel Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Stack

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Substances (Metals)

| Time :            |               | Barometric Pr   | essure :  | 1023           | hPa                |
|-------------------|---------------|-----------------|-----------|----------------|--------------------|
| Page No. :        |               | Pitot Correctio |           | 0.84           |                    |
| Sampling Port No: |               | Stack Gas De    |           | 1.28           | kg/m <sup>3</sup>  |
|                   |               | Slack Gas De    | ansity.   | 1.20           |                    |
| Pitot Tube Type : | S             |                 |           |                | (0 °C, Wet, 1 Atm) |
|                   | <b>D</b> : 1  | Max.            |           |                |                    |
| Sampling Position | Distance      | Differential    | Max Temp. | Max Temp. (Ts) | Corrected Velocity |
| No.               | from far wall | Pressure        | °C        | ĸ              | (Vs) m/s           |
|                   | (mm)          | ΔP, kilo        | •         |                | ( · · · / · · ·    |
|                   |               | Pascals         |           |                |                    |
| 1/1               | 3             | 0.005           | 13.1      | 286.3          | 2.4                |
| 1/2               | 81            | 0.005           | 13.1      | 286.3          | 2.4                |
| 1/3               | 195           | 0.005           | 13.2      | 286.4          | 2.4                |
| 1/4               | 505           | 0.005           | 12.9      | 286.1          | 2.4                |
| 1/5               | 619           | 0.005           | 13.1      | 286.3          | 2.4                |
| 1/6               | 697           | 0.005           | 13.0      | 286.2          | 2.4                |
| 0//               |               | 0.007           | 46.5      |                |                    |
| 2/1               | 3             | 0.005           | 13.0      | 286.2          | 2.4                |
| 2/2               | 81            | 0.005           | 13.2      | 286.4          | 2.4                |
| 2/3               | 195           | 0.005           | 13.2      | 286.4          | 2.4                |
| 2/4               | 505           | 0.005           | 13.4      | 286.6          | 2.4                |
| 2/5               | 619           | 0.005           | 13.3      | 286.5          | 2.4                |
| 2/6               | 697           | 0.005           | 13.1      | 286.3          | 2.4                |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   | ·             |                 |           |                |                    |
|                   |               | ·               |           |                |                    |
|                   | •             |                 |           |                |                    |
|                   |               |                 |           |                |                    |
|                   | I             |                 |           |                |                    |
|                   |               |                 |           |                |                    |
| Average           |               |                 | 13.1      | 286.3          | 2.4                |

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -0.5 mm 1022.95 hPa

#### Stack Analysis - Hazardous Substances Elemental Analysis Results

| Date:           | 28-Jun-16 | Client:         | OneSteel I        | Hexham         |
|-----------------|-----------|-----------------|-------------------|----------------|
| AECOM's Project | t No:     | 60493017 Stack/ | Duct Description: | Shredder Stack |

| Particulate Metals Results |                                                                                         | Gaseous Metals Results                                 | Oixdisable Mercury Results                       |                                                   |                                                             |  |
|----------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|--|
| Metal                      | Front Half, Filter, Acetone<br>Rinses and Acid Rinses<br>(mg). Containers 1, 2 and<br>3 | Back Half, Impingers + Acid<br>Rinses (mg) Container 4 | KO Impinger +<br>Acid Rinses<br>(mg) <b>(5A)</b> | KMnO₄/<br>H₂SO₄ +<br>Rinses (mg)<br>( <b>5B</b> ) | Residue Rinse<br>8N HCl (mg) (lf<br>Required) ( <b>5C</b> ) |  |
| Antimony                   | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Arsenic                    | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Beryllium                  | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Cadmium                    | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Chromium                   | 0.0002                                                                                  | 0.013                                                  |                                                  |                                                   |                                                             |  |
| Cobalt                     | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Copper                     | 0.0011                                                                                  | 0.0019                                                 |                                                  | •••••••••••••••••••••••••••••••••••••••           |                                                             |  |
| Lead                       | 0.011                                                                                   | 0.0026                                                 |                                                  |                                                   |                                                             |  |
| Magnesium                  | <0.045                                                                                  | <0.033                                                 |                                                  |                                                   |                                                             |  |
| Manganese                  | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Mercury                    | <0.0002                                                                                 | <0.0001                                                | <0.0001                                          | <0.0001                                           | <0.0001                                                     |  |
| Nickel                     | 0.0003                                                                                  | 0.00035                                                |                                                  |                                                   |                                                             |  |
| Selenium                   | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Thallium                   | <0.0002                                                                                 | <0.0001                                                |                                                  | ••••••••••••••••••                                |                                                             |  |
| Tin                        | <0.0002                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Vanadium                   | <0.0005                                                                                 | <0.0001                                                |                                                  |                                                   |                                                             |  |
| Zinc                       | 0.018                                                                                   | 0.0014                                                 |                                                  | •••••••••••••••••••••••                           |                                                             |  |

Client:

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

28-Jun-16

Date:

\* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

| AECOM's Proj                  | ect No:                             |                                                        |                                 | Stack/Duct De                                      | scription:                          | Shredder Stack                                         |            |               |                                 |
|-------------------------------|-------------------------------------|--------------------------------------------------------|---------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------------------------------|------------|---------------|---------------------------------|
| Sample                        | Total<br>Particulate<br>Metals (mg) | Total<br>Particulate<br>Metals<br>(mg/m <sup>3</sup> ) | Total<br>Gaseous<br>Metals (mg) | Total<br>Gaseous<br>Metals<br>(mg/m <sup>3</sup> ) | Total<br>Oxidisable<br>Mercury (mg) | Total<br>Oxidisable<br>Mercury<br>(mg/m <sup>3</sup> ) | Total (mg) | Totał (mg/m³) | Mass<br>Emission Rate<br>(mg/s) |
| Antimony                      | < 0.0002                            | < 0.00016                                              | < 0.0001                        | <0.00008                                           |                                     |                                                        | < 0.0002   | <0.00016      | <0.00017                        |
| Arsenic                       | < 0.0002                            | < 0.00016                                              | < 0.0001                        | <0.00008                                           |                                     |                                                        | < 0.0002   | < 0.00016     | <0.00017                        |
| Beryllium                     | < 0.0002                            | <0.00016                                               | < 0.0001                        | <0.00008                                           | 1                                   |                                                        | < 0.0002   | < 0.00016     | <0.00017                        |
| Cadmium                       | < 0.0002                            | < 0.00016                                              | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | < 0.00016     | <0.00017                        |
| Chromium                      | 0.0002                              | 0.00016                                                | 0.013                           | 0.01                                               |                                     |                                                        | 0.01       | 0.008         | 0.0083                          |
| Cobalt                        | <0.0002                             | < 0.00016                                              | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | < 0.00016     | <0.00017                        |
| Copper                        | 0.0011                              | 0.00088                                                | 0.0019                          | 0.0015                                             |                                     |                                                        | 0.003      | 0.0024        | 0.0025                          |
| Lead                          | 0.011                               | 0.0088                                                 | 0.0026                          | 0.0021                                             | ••••••                              |                                                        | 0.01       | 0.008         | 0.0083                          |
| Magnesium                     | < 0.045                             | < 0.036                                                | < 0.033                         | < 0.026                                            |                                     |                                                        | < 0.002    | < 0.0016      | <0.0017                         |
| Manganese                     | < 0.0002                            | <0.00016                                               | < 0.0001                        | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Mercury                       | < 0.0002                            | <0.00016                                               | < 0.0001                        | <0.00008                                           | < 0.0001                            | <0.00008                                               | <0.0005    | < 0.0004      | <0.00041                        |
| Nickel                        | 0.0003                              | 0.00024                                                | 0.00035                         | 0.00028                                            |                                     |                                                        | 0.0007     | 0.00056       | 0.00058                         |
| Selenium                      | < 0.0002                            | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | < 0.00016     | <0.00017                        |
| Thallium                      | <0.0002                             | < 0.00016                                              | < 0.0001                        | <0.00008                                           |                                     |                                                        | <0.0002    | < 0.00016     | <0.00017                        |
| Tin                           | <0.0002                             | <0.00016                                               | <0.0001                         | <0.00008                                           |                                     |                                                        | <0.0002    | <0.00016      | <0.00017                        |
| Vanadium                      | < 0.0005                            | < 0.0004                                               | < 0.0001                        | <0.00008                                           |                                     |                                                        | < 0.0002   | <0.00016      | <0.00017                        |
| Zinc                          | 0.018                               | 0.014                                                  | 0.0014                          | 0.0011                                             |                                     |                                                        | 0.02       | 0.016         | 0.017                           |
| Total<br>Hazardous<br>Metals* | 0.012                               | 0.0092                                                 | 0.016                           | 0.012                                              | <0.0001                             | <0.00008                                               | 0.021      | 0.017         | 0.017                           |
| Total Metals                  | 0.031                               | 0.024                                                  | 0.019                           | 0.015                                              |                                     | 1                                                      | 0.044      | 0.035         | 0.036                           |

OneSteel Hexham

#### Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

\* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Q4AN(EV)-332-FM31

## **STACK ANALYSIS - FINAL CALCULATIONS**

#### Fine Particulate (PM10) (Calculations performed in accordance with relevant test method as defined on cover page)

| Date: 28-Jun-16<br>AECOM's Project No:                                                                                                   | 60493017                                                     | Client:<br>Stack/Duc                     | OneSteel Hexha<br>t Description:              | am<br>Shredder Stack                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|
| (A) Sample gas volume at standa                                                                                                          | ard conditions                                               |                                          |                                               |                                                                           |
| Metered volume (MV <sub>3</sub> ):<br>Average gas meter temp. ( $T_{M,2}$ ):                                                             | 1.0931<br>27.8                                               |                                          | Average barome<br>pressure (P <sub>BARO</sub> |                                                                           |
|                                                                                                                                          | 301.0                                                        | К                                        | Average pressu<br>meter (P <sub>M,2</sub> )   | re at<br>1023.00 hPa                                                      |
| Sample gas volume (MV <sub>4</sub> ); (0°C, gas, 1 atm pressure):                                                                        | dry<br>1.0017                                                | m³                                       |                                               |                                                                           |
| (B) PM10 concentration at standa<br>Blank thimble No.:<br>Thimble No. used: T409<br>Final PM10 Weight (Mp1):<br>PM10 Concentration (C1): | ard conditions<br>0<br>0.00050                               | g<br>=M <sub>p1</sub> /MV <sub>4</sub> = | Blank weight:<br>PM10 Weight                  | g<br>0.0005 g<br>0.0005 g/m <sup>3</sup> (0°C, dry gas,<br>1atm pressure) |
| CO <sub>2</sub> Basis 12 %<br>Average CO <sub>2</sub> %:                                                                                 | 0.0 %                                                        | ;and C <sub>2</sub> =                    |                                               | 0.5 mg/m <sup>3</sup> (0°C, dry gas,<br>1atm pressure)                    |
| Therefore, C <sub>c</sub> :                                                                                                              | = C <sub>a</sub> x 12/(                                      | CO <sub>2</sub> % =                      |                                               | g/m <sup>3</sup> (0°C, dry gas, 1atm<br>pressure, 12% CO₂)                |
|                                                                                                                                          |                                                              | and C <sub>c1</sub> =                    |                                               | ng/m <sup>3</sup> (0°C, dry gas, 1atm<br>pressure, 12% CO <sub>2</sub> )  |
| $O_2$ Basis <b>7</b> %<br>Average $O_2$ %:                                                                                               | 20.9 %                                                       |                                          |                                               |                                                                           |
| Therefore, $C_b$ : = $C_a x$                                                                                                             | (21 - O <sub>2ref</sub> %)/(21 - C                           | ) <sub>2mea</sub> %)                     | 0.07 g                                        | g/m <sup>3</sup> (0°C, dry gas, 1atm pressure,<br>7% O <sub>2</sub> )     |
|                                                                                                                                          |                                                              | ;and C <sub>b1</sub> =                   | 70 r                                          | ng/m <sup>3</sup> (0°C, dry gas, 1atm pressure,<br>7% O <sub>2</sub> )    |
| (C) Moisture content<br>Silica Gel Number: L18                                                                                           |                                                              |                                          |                                               |                                                                           |
| V <sub>v</sub> = <b>7.6</b> g (from<br>Volume of Water Vapour Conden                                                                     | laboratory report)<br>sed $(V = x) =$                        | 0.0000                                   | V <sub>w</sub> =                              | 0 mL (=grams)<br>(recorded on                                             |
| Volume of Water Vapour Conden                                                                                                            | • •                                                          | 0.0000                                   |                                               | Laboratory Form<br>108)                                                   |
| Therefore, B <sub>ws</sub> =                                                                                                             | (V <sub>wc(std)</sub> +V <sub>wsg(std)</sub>                 |                                          |                                               | 1007                                                                      |
|                                                                                                                                          | (V <sub>wc(std)</sub> +V <sub>wsg(std)</sub> +V <sub>n</sub> | n(std))                                  |                                               |                                                                           |
| B <sub>ws</sub> =                                                                                                                        | 1.00 %                                                       |                                          |                                               |                                                                           |



Q4AN(EV)-332-FM31

## ANZ Emission Measurement Calculations Spreadsheet

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

| (D) Gas Composition and Densi                                                                                                    | ity (Re-calculation)       |                                                                                                        |                              |                                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------|--|--|
| (i) Initial gas density for sampling                                                                                             | g:                         | 1.28 kg/m <sup>3</sup> (from Labo                                                                      | ratory Fo                    | rm 107)                                |  |  |
| (ii) Re-calculated gas density ba<br>content in (c):                                                                             | ased on moisture           | 1.27 kg/m <sup>3</sup> (0°C, wet, 1 atm pressure)<br>1.29 kg/m <sup>3</sup> (0°C, dry, 1 atm pressure) |                              |                                        |  |  |
| (iii) Gas density at stack condition                                                                                             | ons =                      |                                                                                                        | 2 <u>73.2)</u> x<br>73.2+Ts) | <u>(Ps)</u><br>(1013.25)               |  |  |
|                                                                                                                                  | =                          | 1.223 kg/m3 (stack conc                                                                                | litions, w                   | et)                                    |  |  |
| (E) Gas Velocities                                                                                                               |                            |                                                                                                        |                              |                                        |  |  |
| (i) Average of pre-sampling velo                                                                                                 | ocities:                   | 2.40 m/s                                                                                               |                              |                                        |  |  |
| (ii) Average of post-sampling ve                                                                                                 | elocities:                 | 2.40 m/s                                                                                               |                              |                                        |  |  |
| (iii) Average of while-sampling v                                                                                                | velocities:                | N/A m/s                                                                                                |                              |                                        |  |  |
| (iv) Overall average of pre-samp<br>sampling velocities (Vs):<br>( <b>Note</b> : (Vs) is from all individual<br>and (ii) alone.) |                            | 2.40 m/s (stack conditi<br>N/A m/s (stack conditi                                                      |                              |                                        |  |  |
| (F) Volumetric Flowrates (Refer                                                                                                  | ence Method US-EPA Me      | thod 2, NSW-EPA TM-2                                                                                   | )                            |                                        |  |  |
| Qstack = Vs x                                                                                                                    | A =                        | 1.09 m <sup>3</sup> /s (stack condi                                                                    | tions)                       |                                        |  |  |
| Qstd = Qstack x <u>Ps</u><br>(Pstd                                                                                               |                            | <u>) - B<sub>w</sub>)</u><br>100                                                                       |                              |                                        |  |  |
| Qstd = $1.0 \text{ m}^{3}/\text{s}$                                                                                              | (0°C, dry gas, 1 atm press | sure)                                                                                                  |                              |                                        |  |  |
| (G) Mass Emission Rate                                                                                                           |                            |                                                                                                        |                              |                                        |  |  |
| 14                                                                                                                               |                            | s, 1 atm pressure )<br>gas, 1 atm pressure )                                                           |                              |                                        |  |  |
|                                                                                                                                  |                            | is, 1 atm pressure<br>gas, 1 atm pressure                                                              | 12%<br>12%                   | CO <sub>2</sub> )<br>CO <sub>2</sub> ) |  |  |
| $C_{\rm ex}$ x Ostd = (                                                                                                          | 0.073 a/s (0°C dry as      | is 1 atm pressure                                                                                      | 7%                           | $O_{2}$                                |  |  |

 $C_{1a} \times Qstd =$ 0.073g/s (0°C, dry gas, 1 atm pressure7% $O_2$ )=73mg/s (0°C, dry gas, 1 atm pressure7% $O_2$ )

Q4AN(EV)-332-FM31

#### **STACK ANALYSIS - FINAL CALCULATIONS**

#### Total Particulate (Calculations performed in accordance with relevant test method as defined on cover page)

| Date: 28-Jun-16<br>AECOM's Project No:                                                                                                                                     | 60493017                                             | Client:<br>Stack/Duc                | OneSteel Hexham<br>t Description: Shredder S        | Stack                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| (A) Sample gas volume at standard cor                                                                                                                                      | nditions                                             |                                     |                                                     |                                                                 |
| Metered volume (MV <sub>3</sub> ):<br>Average gas meter temp. (T <sub>M,2</sub> ):                                                                                         | 1.1039<br>23.7                                       |                                     | Average barometric<br>pressure (P <sub>BARO</sub> ) | 1023 hPa                                                        |
|                                                                                                                                                                            | 296.9                                                | к                                   | Average pressure at meter $(P_{M,2})$               | n<br>1023.00 hPa                                                |
| Sample gas volume (MV <sub>4</sub> ); (0°C, dry gas, 1 atm pressure):                                                                                                      | 1.0256                                               | m <sup>3</sup>                      |                                                     |                                                                 |
| (B) Total Particulate concentration at st<br>Blank thimble No.:<br>Thimble No. used: T433<br>Final Total Particulate Weight (Mp1):<br>Total Dedisulate Concentration (C1): | andard condi<br>0.00080                              | 9                                   | Blank weight:<br>Total Particulate Weight           | g<br>0.0008 g<br>3 g/m³ (0°C, dry gas,                          |
| Total Particulate Concentration (C1):                                                                                                                                      |                                                      | =M <sub>p1</sub> /MV <sub>4</sub> = | - 0.00078                                           | 1atm pressure)                                                  |
| CO <sub>2</sub> Basis 12 %<br>Average CO <sub>2</sub> %: 0                                                                                                                 | .0 %                                                 | ;and C <sub>2</sub> =               | 0.78                                                | <sup>3</sup> mg/m <sup>3</sup> (0°C, dry gas,<br>1atm pressure) |
| Therefore, C <sub>c</sub> :                                                                                                                                                | = C <sub>a</sub> x 12/0                              | CO <sub>2</sub> % =                 | 0.00078 g/m <sup>3</sup> (0°C,<br>pressure,         |                                                                 |
|                                                                                                                                                                            |                                                      | ;and C <sub>c1</sub> =              | 0.78 mg/m <sup>3</sup> (0°0<br>pressure, 1          | C, dry gas, 1atm<br>12% CO <sub>2</sub> )                       |
| O <sub>2</sub> Basis <b>7</b> %<br>Average O <sub>2</sub> %: 20                                                                                                            | .9 %                                                 |                                     |                                                     |                                                                 |
| Therefore, $C_b$ : = $C_a \times (21 - C_b)$                                                                                                                               | D <sub>2ref</sub> %)/(21 - C                         | ) <sub>2mea</sub> %)                | 0.11 g/m³ (0°C,<br>7%                               | dry gas, 1atm pressure, $O_2$ )                                 |
|                                                                                                                                                                            |                                                      | ;and C <sub>b1</sub> =              | 110 mg/m <sup>3</sup> (0°0<br>7%                    | C, dry gas, 1atm pressure, $O_2$ )                              |
| (C) Moisture content<br>Silica Gel Number: DT351                                                                                                                           |                                                      |                                     |                                                     |                                                                 |
| $V_v = 6.9$ g (from labor<br>Volume of Water Vapour Condensed (                                                                                                            | • • •                                                | 0.0053                              | •                                                   | 1 mL (=grams)<br>(recorded on                                   |
| Volume of Water Vapour Condensed (                                                                                                                                         | · · ·                                                | 0.0092                              |                                                     | Laboratory Form<br>108)                                         |
|                                                                                                                                                                            | wc(std)<br>wc(std)+Vwsg(std)                         |                                     |                                                     | ,                                                               |
|                                                                                                                                                                            | <sub>d)</sub> +V <sub>wsg(std)</sub> +V <sub>n</sub> |                                     |                                                     |                                                                 |
| B <sub>ws</sub> = 1.4                                                                                                                                                      | 10 %                                                 |                                     |                                                     |                                                                 |



Q4AN(EV)-332-FM31

## STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

**Total Particulate** 

| (D) Gas Composition and Density (Re-calculation)                                                                                                                                                                    |                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| (i) Initial gas density for sampling:                                                                                                                                                                               | 1.28 kg/m <sup>3</sup> (from Laboratory Form 107)                                                      |  |  |
| (ii) Re-calculated gas density based on moisture content in (c):                                                                                                                                                    | 1.27 kg/m <sup>3</sup> (0°C, wet, 1 atm pressure)<br>1.29 kg/m <sup>3</sup> (0°C, dry, 1 atm pressure) |  |  |
| (iii) Gas density at stack conditions =                                                                                                                                                                             | (ii) x <u>(273.2)</u> x <u>(Ps)</u><br>(273.2+Ts) (1013.25)                                            |  |  |
| =                                                                                                                                                                                                                   | 1.223 kg/m <sup>3</sup> (stack conditions, wet)                                                        |  |  |
| (E) Gas Velocities                                                                                                                                                                                                  |                                                                                                        |  |  |
| (i) Average of pre-sampling velocities:                                                                                                                                                                             | 2.40 m/s                                                                                               |  |  |
| (ii) Average of post-sampling velocities: 2.40 m/s                                                                                                                                                                  |                                                                                                        |  |  |
| (iii) Average of while-sampling velocities: N/A m/s                                                                                                                                                                 |                                                                                                        |  |  |
| (iv) Overall average of pre-sampling and post-<br>sampling velocities (Vs):2.40 m/s (stack conditions, wet)(Note: (Vs) is from all individual data, not from (i)<br>and (ii) alone.)N/A m/s (stack conditions, wet) |                                                                                                        |  |  |
| (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)                                                                                                                                           |                                                                                                        |  |  |
| Qstack = Vs x A =                                                                                                                                                                                                   | 1.09 m <sup>3</sup> /s (stack conditions)                                                              |  |  |
|                                                                                                                                                                                                                     | <u>) - B")</u><br>100                                                                                  |  |  |
| Qstd = 1.0 m <sup>3</sup> /s (0°C, dry gas, 1 atm pressure)                                                                                                                                                         |                                                                                                        |  |  |
| (G) Mass Emission Rate                                                                                                                                                                                              |                                                                                                        |  |  |
|                                                                                                                                                                                                                     | as, 1 atm pressure )<br>gas, 1 atm pressure )                                                          |  |  |

| C <sub>1a</sub> x Qstd =<br>= | 0.00081<br>0.81 | g/s (0°C, dry gas, 1 atm pressure<br>mg/s (0°C, dry gas, 1 atm pressure | 12%<br>12% | CO <sub>2</sub> )<br>CO <sub>2</sub> ) |
|-------------------------------|-----------------|-------------------------------------------------------------------------|------------|----------------------------------------|
| C <sub>1a</sub> x Qstd =      | 0.11            | g/s (0°C, dry gas, 1 atm pressure                                       | 7%         | O <sub>2</sub> )                       |
| =                             | 110             | mg/s (0°C, dry gas, 1 atm pressure                                      | 7%         | O <sub>2</sub> )                       |



Q4AN(EV)-332-FM31

## STACK ANALYSIS - FINAL CALCULATIONS

#### Hazardous Substances (Metals) (Calculations performed in accordance with relevant test method as defined on cover page)

| Date: 28-Jur<br>AECOM's Project No:                                                                               | -                                         | 60493017                                  | Client:<br>Stack/Duct       | OneSteel Hexh<br>t Description:             | am<br>Shredder S                        | tack                                                                 |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|
| (A) Sample gas volun                                                                                              | ne at standard con                        | ditions                                   |                             |                                             |                                         |                                                                      |
| Metered volume (MV <sub>3</sub><br>Average gas meter te                                                           |                                           | 1.3425<br>21 <i>.</i> 5                   |                             | Average baron<br>pressure (P <sub>BAR</sub> |                                         | 1023 hPa                                                             |
|                                                                                                                   |                                           | 294.7                                     | К                           | Average press<br>(P <sub>M,2</sub> )        | ure at meter                            | 1023.00 hPa                                                          |
| Sample gas volume (l<br>gas, 1 atm pressure):                                                                     | MV <sub>4</sub> ); (0 <sup>o</sup> C, dry | 1.2565                                    | m³                          |                                             |                                         |                                                                      |
| (B) Metals concentrat<br>Blank thimble No.:<br>Thimble No. used:<br>Final Metals Weight (<br>Metals Concentration | Mp1):                                     | nditions<br>)<br>0.00002                  | g<br>=M <sub>p1</sub> /MV₄= | Blank weight:<br>Metals Weight              | 0.000017                                | 9<br>0:000021 g<br>g/m <sup>3</sup> (0°C, dry gas,<br>1atm pressure) |
| CO <sub>2</sub> Basis<br>Average CO <sub>2</sub> %:                                                               | 12 %<br>0.(                               | ) %                                       | ;and C <sub>2</sub> =       |                                             | 0.017                                   | mg/m <sup>3</sup> (0°C, dry gas,<br>1atm pressure)                   |
| Therefore, C <sub>c</sub> :                                                                                       |                                           | = C <sub>a</sub> x 12/0                   | CO <sub>2</sub> % =         | 0.000017                                    | g/m <sup>3</sup> (0°C, o<br>pressure, 1 | dry gas, 1atm<br>2% CO <sub>2</sub> )                                |
|                                                                                                                   |                                           |                                           | ;and C <sub>c1</sub> =      | 0.017                                       | mg/m <sup>3</sup> (0°C<br>pressure, 1   | , dry gas, 1atm<br>2% CO <sub>2</sub> )                              |
| O <sub>2</sub> Basis<br>Average O <sub>2</sub> %:                                                                 | <b>7</b> %<br>20.9                        | 9%                                        |                             |                                             |                                         |                                                                      |
| Therefore, $C_b$ :                                                                                                | =C <sub>a</sub> x (21 - O                 | <sub>2ref</sub> %)/(21 - C                | ) <sub>2mea</sub> %)        | 0.0024                                      | g/m <sup>3</sup> (0°C, o<br>7%          | dry gas, 1atm pressure,<br>O <sub>2</sub> )                          |
|                                                                                                                   |                                           |                                           | ;and C <sub>b1</sub> =      | 2.4                                         | mg/m <sup>3</sup> (0°C<br>7%            | , dry gas, 1atm pressure,<br>O <sub>2</sub> )                        |
| (C) Moisture content<br>Silica Gel Number:                                                                        | 99                                        |                                           |                             |                                             |                                         | mL (=grams)                                                          |
| V <sub>v</sub> =<br>Volume of Water Vap                                                                           | 9.7 g (from labora                        |                                           | 0.0027                      | V <sub>w</sub> =                            | 2                                       | (recorded on                                                         |
| Volume of Water Vap                                                                                               |                                           |                                           | 0.0027                      |                                             |                                         | Laboratory Form<br>108)                                              |
| Therefore, B <sub>ws</sub> =                                                                                      |                                           | <sub>rc(std)</sub> +V <sub>wsg(std)</sub> |                             |                                             |                                         | /                                                                    |
|                                                                                                                   | (V <sub>wc(std</sub>                      | )+V <sub>wsg(std)</sub> +V <sub>n</sub>   | <sub>n(std)</sub> )         |                                             |                                         |                                                                      |
| B <sub>ws</sub> =                                                                                                 | 1.2                                       | 3 %                                       |                             |                                             |                                         |                                                                      |



Q4AN(EV)-332-FM31

## STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

| (D) Gas Composition and Density (Re-calculation)                                                                                                                                                                    |                       |                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| (i) Initial gas density for                                                                                                                                                                                         | sampling:             | 1.28 kg/m <sup>3</sup> (from Laboratory Form 107)                                                                         |  |  |
| (ii) Re-calculated gas d<br>content in (c):                                                                                                                                                                         | ensity based on       | moisture<br>1.27 kg/m <sup>3</sup> (0°C, wet, 1 atm pressure)<br>1.29 kg/m <sup>3</sup> (0°C, dry, 1 atm pressure)        |  |  |
| (iii) Gas density at stac                                                                                                                                                                                           | k conditions =        | (ii) x <u>(273.2)</u> x <u>(Ps)</u><br>(273.2+Ts) (1013.25)                                                               |  |  |
|                                                                                                                                                                                                                     |                       | = 1.223 kg/m <sup>3</sup> (stack conditions, wet)                                                                         |  |  |
| (E) Gas Velocities                                                                                                                                                                                                  |                       |                                                                                                                           |  |  |
| (i) Average of pre-samp                                                                                                                                                                                             | ling velocities:      | 2.40 m/s                                                                                                                  |  |  |
| (ii) Average of post-san                                                                                                                                                                                            | npling velocities:    | 2.40 m/s                                                                                                                  |  |  |
| (iii) Average of while-sampling velocities: N/A m/s                                                                                                                                                                 |                       |                                                                                                                           |  |  |
| (iv) Overall average of pre-sampling and post-<br>sampling velocities (Vs):2.40 m/s (stack conditions, wet)(Note: (Vs) is from all individual data, not from (i)<br>and (ii) alone.)N/A m/s (stack conditions, wet) |                       |                                                                                                                           |  |  |
| (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)                                                                                                                                           |                       |                                                                                                                           |  |  |
| Qstack =                                                                                                                                                                                                            | Vs x A =              | 1.09 m <sup>3</sup> /s (stack conditions)                                                                                 |  |  |
| Qstd = Qstack x                                                                                                                                                                                                     | <u>Ps</u> x<br>(Pstd) | <u>(Tstd)</u> × <u>(100 - B<sub>w</sub>)</u><br>(Ts) 100                                                                  |  |  |
| Qstd = $1.0 \text{ m}^3/\text{s} (0^\circ \text{C}, \text{ dry gas}, 1 \text{ atm pressure})$                                                                                                                       |                       |                                                                                                                           |  |  |
| (G) Mass Emission Rat                                                                                                                                                                                               | e                     |                                                                                                                           |  |  |
| Rm = C <sub>1a</sub> x Qstd                                                                                                                                                                                         | = 0.000018<br>= 0.018 | g/s (0°C, dry gas, 1 atm pressure )<br>mg/s (0°C, dry gas, 1 atm pressure )                                               |  |  |
| C <sub>1a</sub> x Qstd                                                                                                                                                                                              | = 0.000018<br>= 0.018 | g/s (0°C, dry gas, 1 atm pressure $12\%$ CO <sub>2</sub> )<br>mg/s (0°C, dry gas, 1 atm pressure $12\%$ CO <sub>2</sub> ) |  |  |
| C <sub>1a</sub> x Qstd                                                                                                                                                                                              | = 0.0025<br>= 2.5     | g/s (0°C, dry gas, 1 atm pressure $7\%$ O <sub>2</sub> ) mg/s (0°C, dry gas, 1 atm pressure $7\%$ O <sub>2</sub> )        |  |  |



## ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

| EMISSION MONITORING RESULTS, SHREDDER STACK<br>ONESTEEL HEXHAM<br>28-Jun-16<br>FINE PARTICULATE (PM10)<br>TOTAL PARTICULATE<br>HAZARDOUS SUBSTANCES (METALS) |                         |         |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|--|--|--|--|--|--|--|
| Sampling Conditions:                                                                                                                                         |                         |         |  |  |  |  |  |  |  |  |
| Stack internal diameter at test location                                                                                                                     | 760 mm                  |         |  |  |  |  |  |  |  |  |
| Stack gas temperature (average)                                                                                                                              | 13.2 °C                 | 286.4 K |  |  |  |  |  |  |  |  |
| Stack pressure (average)                                                                                                                                     | 1023 hPa                |         |  |  |  |  |  |  |  |  |
| Stack gas velocity (average, stack conditions)                                                                                                               | 2.4 m/s                 |         |  |  |  |  |  |  |  |  |
| Stack gas flowrate (stack conditions)                                                                                                                        | 1.1 m <sup>3</sup> /s   |         |  |  |  |  |  |  |  |  |
| Stack gas flowrate (0ºC, dry gas, 1 atm pressure)                                                                                                            | 1 m <sup>3</sup> /s     |         |  |  |  |  |  |  |  |  |
| Fine Particulate (PM10) Testing                                                                                                                              |                         |         |  |  |  |  |  |  |  |  |
| Test Period                                                                                                                                                  | 10:38 -                 | 12:42   |  |  |  |  |  |  |  |  |
| Fine Particulate (PM10) Mass                                                                                                                                 | 0.5 mg                  |         |  |  |  |  |  |  |  |  |
| Gas Volume Sampled                                                                                                                                           | 1.00 m <sup>3</sup>     |         |  |  |  |  |  |  |  |  |
| Fine Particulate (PM10) Emission*1                                                                                                                           | 0.5 mg/m <sup>3</sup>   |         |  |  |  |  |  |  |  |  |
| Fine Particulate (PM10) Mass Emission Rate*2                                                                                                                 | 0.52 mg/s               |         |  |  |  |  |  |  |  |  |
| Regulatory Limit                                                                                                                                             | NA                      |         |  |  |  |  |  |  |  |  |
| Total Particulate Testing                                                                                                                                    |                         |         |  |  |  |  |  |  |  |  |
| Test Period                                                                                                                                                  | 10:38 -                 | 12:42   |  |  |  |  |  |  |  |  |
| Total Particulate Mass                                                                                                                                       | 0.8 mg                  |         |  |  |  |  |  |  |  |  |
| Gas Volume Sampled                                                                                                                                           | 1.03 m <sup>3</sup>     |         |  |  |  |  |  |  |  |  |
| Total Particulate Emission*1                                                                                                                                 | 0.78 mg/m <sup>3</sup>  |         |  |  |  |  |  |  |  |  |
| Total Particulate Mass Emission Rate*2                                                                                                                       | 0.81 mg/s               |         |  |  |  |  |  |  |  |  |
| Regulatory Limit                                                                                                                                             | 100 mg/m <sup>3</sup>   |         |  |  |  |  |  |  |  |  |
| Hazardous Substances (Metals) Testing                                                                                                                        |                         |         |  |  |  |  |  |  |  |  |
| Test Period                                                                                                                                                  | 10:38 -                 | 12:42   |  |  |  |  |  |  |  |  |
| Hazardous Substances (Metals) Mass                                                                                                                           | 0.021 mg                |         |  |  |  |  |  |  |  |  |
| Gas Volume Sampled                                                                                                                                           | 1.26 m <sup>3</sup>     |         |  |  |  |  |  |  |  |  |
| Hazardous Substances (Metals) Emission*1                                                                                                                     | 0.017 mg/m <sup>3</sup> |         |  |  |  |  |  |  |  |  |
| Hazardous Substances (Metals) Mass Emission Rate*2                                                                                                           | 0.018 mg/s              |         |  |  |  |  |  |  |  |  |
| Regulatory Limit                                                                                                                                             | NA                      |         |  |  |  |  |  |  |  |  |
| Moisture Content (%)                                                                                                                                         | 1.3                     |         |  |  |  |  |  |  |  |  |
| Gas Density (dry at 1 atmosphere)                                                                                                                            | 1.29 kg/m <sup>3</sup>  |         |  |  |  |  |  |  |  |  |
| Dry Molecular Weight                                                                                                                                         | 28.8 g/g-mole           |         |  |  |  |  |  |  |  |  |

Notes \*1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

\*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See  $Q_{\text{std}}$  in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

# Laboratory Results (11 pages)

# Appendix B Laboratory Results (11 pages)



5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

### **STACK EMISSION - PARTICULATES REPORT**

| <u>Origin:</u><br>Project: | AECOM - Newcastle<br>60493017                         | Report :        | 11570  | -0-P Page 1 of 1                   |
|----------------------------|-------------------------------------------------------|-----------------|--------|------------------------------------|
| Description :              | Stack Emission Samples<br>Received: 30-Jun-16         | Date :          | 04-Jul | -16                                |
| <u>Report To :</u>         | Colin Clarke<br>17 Warabrook Blvd, Warabrook NSW 2304 | <u>Copy to:</u> | FILE   |                                    |
| Thimble<br>ID              |                                                       | Volume          | (mL)   | Total<br>Particulate Matter<br>(g) |
| T409                       | Filter                                                | e.,             |        | 0.0005                             |
| T433                       | Filter                                                | -               |        | 0.0008                             |



NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Reported By: ~

Robert Dawson

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

Note : Sampled by Client



5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

## STACK EMISSION - MOISTURE REPORT

| <u>Origin:</u><br>Project: | AECOM - Newcastle<br>60493017                         | Report :        | 11570-0-М | Page 1 of 1 |
|----------------------------|-------------------------------------------------------|-----------------|-----------|-------------|
| Description :              | Stack Emission Samples<br>Received: 30-Jun-16         | <u>Date :</u>   | 04-Jul-16 |             |
| <u>Report To :</u>         | Colin Clarke<br>17 Warabrook Blvd, Warabrook NSW 2304 | <u>Copy to:</u> | FILE      |             |
| Jar ID                     | М                                                     | oisture<br>(g)  |           |             |
| 99                         |                                                       | 9.7             |           |             |
| DT351                      |                                                       | 6.9             |           |             |
| L18                        |                                                       | 7.6             |           |             |



NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 Reported By:

using in-house M301

Determined in Accordance With: Moisture content in stack gases by gravimetric

Robert Dawson



Chartered Chemists

11-Jul-2016

AECOM

17 Warabrook Bvde Warabrook

NSW 2304 Attention: James Lang A.B.N. 44 000 964 278 10 / 585 Blackburn Road Notting Hill, Vic, 3168 Telephone: (03) 9574 3200

> REPORT NUMBER: M161422 Site/Client Ref: 60493017/1.1 Order No: 60493017-1.1

## **CERTIFICATE OF ANALYSIS**

SAMPLES: Twelve samples were received for analysis

DATE RECEIVED:

1-Jul-2016

1-Jul-2016

DATE COMMENCED:

METHODS:

See Attached Results

**RESULTS:** Please refer to attached pages for results. Note: Results are based on samples as received at SGS Leeder Consulting's laboratories

**REPORTED BY:** 

ING

Ming Dai Senior Chemist



NATA Accredited Laboratory Number: 14429

Accredited for compliance with ISO/IEC 17025.



# **ANALYTICAL RESULTS**

#### Matrix: Filter

Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02 Sample units are expressed in µg total

|              | Leeder ID<br>Client ID | 2016017893<br>Metals 1 | 2016017894<br>Metals 12 | 2016017895<br>Method |
|--------------|------------------------|------------------------|-------------------------|----------------------|
| Analyte Name | Sampled Date<br>PQL    | 28/06/2016             | 28/06/2016              | Blank                |
| Sb           | 0.2                    | nd                     | nd                      | nd                   |
| As           | 0.2                    | nd                     | nd                      | nd                   |
| Ве           | 0.2                    | nd                     | nd                      | nd                   |
| Cd           | 0.2                    | nd                     | nd                      | nd                   |
| Cr           | 0.2                    | 0.8                    | 0.9                     | nd                   |
| Co           | 0.2                    | nd                     | nd                      | nd                   |
| Cu           | 0.2                    | 0.5                    | 0.2                     | nd                   |
| Pb           | 0.2                    | 0.3                    | 0.3                     | nd                   |
| Mg           | 2                      | 25                     | 25                      | nd                   |
| Mn           | 0.2                    | nd                     | nd                      | nd                   |
| Hg           | 0.2                    | nd                     | nd                      | nd                   |
| Ni           | 0.2                    | nd                     | nd                      | nd                   |
| Se           | 0.2                    | nd                     | nd                      | nd                   |
| ті           | 0.2                    | nd                     | nd                      | nd                   |
| Sn           | 0.2                    | nd                     | nd                      | nd                   |
| v            | 0.2                    | 0.5                    | 0.5                     | nd                   |
| Zn           | 0.2                    | 290                    | 300                     | nd                   |



## **ANALYTICAL RESULTS**

#### Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total) Sample units are expressed in µg total

|               | Leeder ID<br>Client ID | 2016017896<br>Metals 3 | 2016017897<br>Metals 4 | 2016017898<br>Metals 8A |  |
|---------------|------------------------|------------------------|------------------------|-------------------------|--|
| Analyte Name  | Sampled Date<br>PQL    |                        |                        | 28/06/2016              |  |
| Sb            | 0.1                    | nd                     | nd                     | nd                      |  |
| As            | 0.1                    | nd                     | nd                     | nd                      |  |
| Be            | 0.1                    | nd                     | nd                     | nd                      |  |
| Cd            | 0.1                    | nd                     | nd                     | nd                      |  |
| Cr            | 0.1                    | 0.3                    | 13                     | nd                      |  |
| Co            | 0.1                    | nd                     | nd                     | nd                      |  |
| Cu            | 0.1                    | 0.8                    | 1.9                    | nd                      |  |
| Pb            | 0.1                    | 11                     | 2.6                    | nd                      |  |
| Mg            | 0.1                    | 10                     | 20                     | 20                      |  |
| Mn            | 0.1                    | nd                     | nd                     | nd                      |  |
| Hg            | 0.1                    | nd                     | nd                     | nd                      |  |
| Ni            | 0.1                    | 0.4                    | 0.4                    | nd                      |  |
| Se            | 0.1                    | nd                     | nd                     | nd                      |  |
| ті            | 0.1                    | nd                     | nd                     | nd                      |  |
| Sn            | 0.1                    | nd                     | nd                     | nd                      |  |
| v             | 0.1                    | nd                     | nd                     | nd                      |  |
| Zn            | 0.1                    | 28                     | 1.7                    | nd                      |  |
| Sample Volume |                        | 95                     | 300                    | 300                     |  |



## **ANALYTICAL RESULTS**

#### **Matrix: Impinger Solution**

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total) Sample units are expressed in µg total

Test Started: 7/07/2016

| Leeder ID<br>Client ID |                     | 2016017899<br>Metals 9 | 2016017900<br>Metals 5A | 2016017901<br>Metals 5C | 2016017902<br>Metals 8B | 2016017903<br>Metals 11 | 2016017904<br>Method |
|------------------------|---------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|
| Analyte Name           | Sampled Date<br>PQL | 28/06/2016             | 28/06/2016              | 28/06/2016              | 28/06/2016              | 28/06/2016              | Blank                |
| Sb                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| As                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Ве                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Cd                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Cr                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Co                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Cu                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Pb                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Mg                     | 0.1                 | 13                     |                         |                         |                         |                         | nd                   |
| Mn                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Hg                     | 0.1                 | nd                     | nd                      | nd                      | nd                      | nd                      | nd                   |
| Ni                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Se                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| ті                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Sn                     | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| v                      | 0.1                 | nd                     |                         |                         |                         |                         | nd                   |
| Zn                     | 0.1                 | 0.3                    |                         |                         |                         |                         | nd                   |
| Sample Volume          |                     | 210                    | 100                     | 260                     | 100                     | 260                     |                      |

#### Matrix: KMnO4

#### Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Sample units are expressed in µg total

|                     | Leeder ID<br>Client ID | 2016017905<br>Metals 5B | 2016017906<br>Metals 10 | 2016017907<br>Method |
|---------------------|------------------------|-------------------------|-------------------------|----------------------|
| Analyte Name        | Sampled Date<br>PQL    | 28/06/2016              | 28/06/2016              | Blank                |
| Hg<br>Sample Volume | 0.5                    | nd<br>400               | nd<br>110               | nd                   |



# QA/QC RESULTS

#### Matrix: Filter

#### Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02 Quality Control Results are expressed in Percent Recovery of expected result

|              | Leeder ID<br>Client ID | 2016017908<br>Matrix | 2016017909<br>Matrix |
|--------------|------------------------|----------------------|----------------------|
| Analyte Name | Sampled Date<br>PQL    | Spike                | Spike Dup            |
| Sb           |                        | 98                   | 100                  |
| As           |                        | 100                  | 99                   |
| Ве           |                        | 99                   | 100                  |
| Cd           |                        | 98                   | 99                   |
| Cr           |                        | 102                  | 100                  |
| Co           |                        | 102                  | 103                  |
| Cu           |                        | 98                   | 98                   |
| Pb           |                        | 111                  | 110                  |
| Mg           |                        | 91                   | 92                   |
| Mn           |                        | 101                  | 98                   |
| Hg           |                        | 99                   | 92                   |
| Ni           |                        | 100                  | 101                  |
| Se           |                        | 93                   | 92                   |
| ті           |                        | 117                  | 117                  |
| Sn           |                        | 104                  | 105                  |
| v            |                        | 108                  | 110                  |
| Zn           |                        | 97                   | 97                   |



# QA/QC RESULTS

#### **Matrix: Impinger Solution**

#### Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total) Quality Control Results are expressed in Percent Recovery of expected result

Test Started: 7/07/2016

|              | Leeder ID<br>Client ID | 2016017910<br>Matrix | 2016017911<br>Matrix |
|--------------|------------------------|----------------------|----------------------|
| Analyte Name | Sampled Date<br>PQL    | Spike                | Spike Dup            |
| Sb           |                        | 98                   | 97                   |
| As           |                        | 98                   | 100                  |
| Ве           |                        | 105                  | 99                   |
| Cd           |                        | 100                  | 99                   |
| Cr           |                        | 101                  | 100                  |
| Co           |                        | 101                  | 101                  |
| Cu           |                        | 94                   | 92                   |
| Pb           |                        | 113                  | 113                  |
| Mg           |                        | 99                   | 97                   |
| Mn           |                        | 90                   | 88                   |
| Hg           |                        | 98                   | 98                   |
| Ni           |                        | 99                   | 99                   |
| Se           |                        | 92                   | 87                   |
| ті           |                        | 117                  | 117                  |
| Sn           |                        | 100                  | 101                  |
| v            |                        | 105                  | 105                  |
| Zn           |                        | 115                  | 118                  |

#### Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total) Quality Control Results are expressed in Percent Recovery of expected result

|              | Leeder ID<br>Client ID | 2016017912<br>Matrix | 2016017913<br>Matrix |
|--------------|------------------------|----------------------|----------------------|
| Analyte Name | Sampled Date<br>PQL    | Spike                | Spike Dup            |
| Hg           |                        | 101                  | 102                  |

Page 6 of 7



#### QUALIFIERS / NOTES FOR REPORTED RESULTS

- PQL Practical Quantitation Limit
- nd Not Detected The analyte was not detected above the reported PQL.
- is Insufficient Sample to perform this analysis.
- T Tentative identification based on computer library search of mass spectra.
- NC Not calculated and/or Results below PQL
- NV No Vacuum, Canister received above standard atmospheric pressure
- nr Not Requested for analysis.
- R Rejected Result results for this analysis failed QC checks.
- SQ Semi-Quantitative result quantitation based on a generic response factor for this class of analyte.
- IM Inappropriate method of analysis for this compound
- U Unable to provide Quality Control data high levels of compounds in sample interfered with analysis of QC results.
- UF Unable to provide Quality Control data- Surrogates failed QC checks due to sample matrix effects
- L Analyte detected at a level above the linear response of calibration curve.
- E Estimated result. NATA accreditation does not cover estimated results.
- C1 These compounds co-elute.
- -- Parameter Not Determined
- CT Elevated concentration. Results reported from carbon tube analysis
- \*\* Sample shows non-petroleum hydrocarbon profile

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exo nerate parties to a transaction from exercising all their rights and obligations under the transaction documents

This report must not be reproduced, except in full.



APPENDIX ONE.

CHAIN OF CUSTODY DOCUMENT

| CLIENT NAME: AECOM<br>CLIENT ADDRESS: 17 Warabrook I<br>Warabrook NSW 2304 |                       |        |                | CONTACT PHONE No:<br>CONTACT FAX No: |                |                                                                          |                  |                 |                  | 02 4911<br>02 4911 |                           |                        |                            | Sample Disposal (Please X) After: 4 Weeks ( ) 6 Weeks ( ) |                                           |             |                                      |            |             |              |           |     |              |
|----------------------------------------------------------------------------|-----------------------|--------|----------------|--------------------------------------|----------------|--------------------------------------------------------------------------|------------------|-----------------|------------------|--------------------|---------------------------|------------------------|----------------------------|-----------------------------------------------------------|-------------------------------------------|-------------|--------------------------------------|------------|-------------|--------------|-----------|-----|--------------|
|                                                                            |                       |        |                |                                      | TS REQU        |                                                                          | v.               |                 |                  |                    |                           |                        |                            | An                                                        | Analyses Required (Analyte + Method Code) |             |                                      |            |             |              |           |     |              |
| CONTACT:                                                                   | In                    | mael   | Lang           |                                      |                | REPORT                                                                   |                  |                 |                  | iames              | .lang@a                   | ecom co                | om                         |                                                           | All                                       | T           | Incquit                              |            | I           |              |           |     | Т            |
| AMPLED BY:                                                                 |                       | DT V   |                |                                      |                | UOTE NU                                                                  |                  |                 |                  | Idilles            | langwa                    | econice                | 2111                       |                                                           | 129*                                      |             |                                      |            |             |              |           |     |              |
|                                                                            |                       |        | 65             |                                      |                |                                                                          |                  | Second 1        |                  |                    |                           |                        |                            |                                                           | Method                                    |             |                                      |            |             |              |           |     |              |
| PROJECT REF. / ORDER No:<br>Client<br>Sample ID                            | Date                  |        | 7-1.1<br>Matri | x                                    | 0.1-1L         | 0.1-1.0                                                                  | 0.1-1.0          | 40ml            | 40ml             | 0.1-1L             | 125mL                     | 125mL                  | (G=glass<br>125mL(P)       | s, P=plastic)<br>125mL                                    | <                                         |             |                                      |            |             |              |           |     |              |
|                                                                            | Sampled               | Filter | Impinger       | KMn04                                | Jar(G)<br>n.a. | litre(G)<br>Nat.                                                         | litre(P)<br>Nat. | Vial(G)<br>Nat. | Vial(G)<br>H2SO4 | (P)<br>H2SO4       | (P)<br>HCl acid<br>washed | (P)<br>Zn Ace.<br>NaOH | Filtered<br>Yes/No<br>HNO3 | (P)<br>NaOH                                               | Metals -USEP                              | Mercury     |                                      |            |             |              |           |     |              |
| Metals 1                                                                   |                       | x      |                |                                      | x              |                                                                          |                  | 102             |                  |                    |                           |                        |                            |                                                           | x                                         |             |                                      |            |             | (            |           |     | T            |
| Metals 3                                                                   |                       |        | x              |                                      |                | 1                                                                        | x                |                 |                  |                    |                           |                        |                            |                                                           | x                                         |             |                                      |            |             |              |           |     | T            |
| Metals 4                                                                   |                       |        | x              |                                      | 1              | 100                                                                      | x                |                 |                  |                    |                           |                        |                            |                                                           | x                                         |             |                                      |            |             |              |           |     | T            |
| Metals 5A                                                                  |                       |        | x              |                                      |                |                                                                          | x                |                 |                  |                    |                           |                        |                            |                                                           |                                           | x           |                                      |            |             |              |           |     | T            |
| Metals 5B                                                                  |                       |        |                | x                                    |                | x                                                                        |                  |                 |                  |                    |                           |                        |                            |                                                           |                                           | x           |                                      |            |             |              |           |     | T            |
| Metals 5C                                                                  |                       |        | x              |                                      |                |                                                                          | x                |                 |                  |                    |                           |                        |                            |                                                           | 1                                         | x           |                                      | -          |             |              |           |     | T            |
| Metals 8A                                                                  |                       |        | x              |                                      |                |                                                                          | x                |                 |                  |                    |                           |                        |                            |                                                           | x                                         |             |                                      |            |             |              |           |     |              |
| Metals 8B                                                                  |                       |        | x              |                                      |                |                                                                          | x                |                 |                  |                    |                           |                        |                            |                                                           |                                           | x           |                                      |            |             | 1            |           |     |              |
| Metals 9                                                                   |                       |        | x              |                                      |                |                                                                          | x                |                 |                  |                    |                           |                        |                            |                                                           | x                                         |             |                                      |            |             |              |           |     |              |
| Metals 10                                                                  |                       |        |                | x                                    |                | x                                                                        |                  |                 |                  |                    | 112                       |                        |                            |                                                           |                                           | x           |                                      |            |             |              |           |     |              |
| Metals 11                                                                  |                       |        | x              |                                      | 1.1            |                                                                          | x                |                 |                  |                    |                           |                        |                            | 11                                                        |                                           | x           | 1.21                                 |            |             |              | 111       | ÷., |              |
| Metals 12                                                                  |                       | x      |                |                                      | x              |                                                                          | _                | -               | -                | -                  |                           |                        |                            |                                                           | x                                         | -           |                                      |            |             |              |           |     | $\downarrow$ |
|                                                                            | Totals:               | 2      | 8              | 2                                    | 2              | 2                                                                        | 8                |                 |                  |                    |                           |                        | -                          | -                                                         |                                           | 5           | 6                                    | -          | +           | -            |           |     | ╀            |
| CH                                                                         | AIN OF CI             | USTO   | DDY            | RECO                                 | ORD            |                                                                          |                  |                 |                  |                    |                           |                        |                            |                                                           | Please                                    | Note:       | Dissol                               | ved metals | require fi  | Itering in t | he field. |     | -            |
| ELEASED BY: (Name)<br>James Lang<br>ECEIVED BY: (Name)<br>Soudet Robisson  | (Signatu<br>(Signatur | re)    | ()             | Date /                               |                | Time) Custody Seals Intact?<br>7/03/16 2pm<br>Time) Samples Received Chi |                  |                 |                  |                    |                           |                        | 23                         | Comme                                                     | nts: (ej                                  | . Highly co | he HNO3 a<br>ontaminate<br>Gr, Co, C | d samples  | , reporting | requireme    | ents etc) |     |              |

## AECOM

AECOM Australia Pty Ltd

17 Warabrook Boulevard Warabrook NSW 2304 PO Box 73 Hunter Region MC NSW 2310 Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925