Infrabuild Recycling Hexham
Infrabuild Recycling Pty Ltd
Doc No. 60493017_6.1_Q1_202

1st Quarter Emissions Testing Report 2021

Infrabuild Recycling Hexham

1st Quarter Emissions Testing Report 2021

Infrabuild Recycling Hexham

Client: Infrabuild Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

05-May-2021

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 1st Quarter Emissions Testing Report 2021

Ref 60493017

Date 05-May-2021

Prepared by Colin Clarke

Reviewed by Chad Whitburn

AECOM Approved Signatory Chad Whitburn _____

Revision History

Rev Revision Date		Details	Authorised		
Rev	Revision Date	Details	Name/Position	Signature	
0	05-May-2021	Report for Issue	Chad Whitburn Technical Director - Compliance Services	aut -	

Table of Contents

1.0	Introduc	tion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo		3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Samplin	Location	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Append	dix A		
	Field Sh	eets (19 pages)	Α
Append	dix B		
	Laborato	ory Results	
	(9 pages		В
List of	Tables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	2	AECOM NATA Endorsed Methods	3
Table 3	3	Sampling Location Summary	4
Table 4	ļ	Shredder Baghouse Emission Results Summary, 9 April 2021	5
Table 5	5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	
		Results, 9 April 2021	6
Table 6	6	Hazardous Substances (Metals) Elemental Analysis Results, 9 April 2021	7

1

1.0 Introduction

AECOM was appointed by Infrabuild Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Sampling was attempted on 26 & 29 March 2021, however on those days, testing was unable to be completed due to unscheduled plant downtime. Testing was undertaken on 9 April 2021 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Australian Laboratory Services (ALS), laboratory NATA accreditation number 825, performed the following analysis detailed in report number EN2102943:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME319991 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title	
AS4323.1	N/A	Selection of sampling positions	
AS4323.2	N/A	Determination of total particulate matter – isokinetic manual sampling – gravimetric method	
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)	
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases	
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight	
NSW EPA OM-5	USEPA (1997) Method 201A	Determination of PM ₁₀ emissions	
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources	

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 9 April 2021.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported results represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 9 April 2021

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	5.8	100
Fine Particulate (PM ₁₀) (mg/m ³)	0.77	N/A
Lead (mg/m ³)	0.0028	5.0
Mercury (mg/m³)	0.000043	1.0
Total Hazardous Substances (Metals) (mg/m³)	0.087	N/A

Results from testing conducted on EPL Point 1 on 9 April 2021 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM10), Total Particulate and Hazardous Substance (Metals) Results, 9 April 2021

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	26.6	°C	299.8 K
Stack pressure (average)	1006	hPa	
Stack gas velocity (average, stack conditions)	7.1	m/s	
Stack gas flowrate (stack conditions)	3.2	m³/s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.8	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	9:35	-	10:53
Fine Particulate (PM ₁₀) Mass	0.7	mg	
Gas Volume Sampled	0.906	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	0.77	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate*2	2.2	mg/s	
Regulatory Limit	N/A		
Total Particulate Testing			
Test Period	9:35	-	10:53
Total Particulate Mass	5.2	mg	
Gas Volume Sampled	0.89	m^3	
Total Particulate Emission*1	5.8	mg/m³	
Total Particulate Mass Emission Rate*2	16	mg/s	
Regulatory Limit	100	mg/m³	
Hazardous Substances (Metals) Testing			
Test Period	9:35	-	10:53
Hazardous Substances (Metals) Mass	0.103	mg	
Gas Volume Sampled	1.18	m^3	
Hazardous Substances (Metals) Emission*1	0.087	mg/m³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.25	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	2.1		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 9 April 2021

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.00010	<0.000085	0.000050	0.000042			0.000050	0.000042	0.00012
Arsenic	0.00017	0.00014	<0.00010	<0.00085			0.00017	0.00014	0.00041
Beryllium	0.000010	0.0000085	<0.00010	<0.00085	l.		0.000010	0.0000085	0.000024
Cadmium	0.00020	0.00017	0.0019	0.0016			0.0021	0.0018	0.0051
Chromium	0.0012	0.0010	0.019	0.016			0.021	0.01780	0.051
Cobalt	0.000020	0.000017	0.00025	0.00021			0.00027	0.00023	0.00066
Copper	0.0015	0.0013	0.0018	0.0015			0.0033	0.0028	0.0080
Lead	0.0017	0.0014	0.0016	0.0013			0.0033	0.0028	0.0080
Magnesium	0.040	0.034	0.0044	0.0037			0.045	0.038	0.11
Manganese	0.0048	0.0041	0.058	0.049			0.063	0.053	0.15
Mercury	<0.00010	<0.000085	<0.00010	<0.000085	0.000051	0.000043	0.000051	0.000043	0.00012
Nickel	0.0018	0.0015	0.0097	0.0082			0.012	0.010	0.029
Selenium	0.000040	0.000034	0.00035	0.00030			0.00039	0.00033	0.00095
Thallium	<0.00010	<0.000085	<0.00010	<0.000085			<0.00010	<0.000085	<0.00024
Tin	0.00079	0.00067	<0.0089	<0.0075			0.00079	0.00067	0.0019
Vanadium	<0.00020	<0.00017	<0.00050	<0.00042			<0.00025	<0.00021	<0.00061
Zinc	1.3	1.1	0.017	0.015			1.3	1.10	3.2
Total Hazardous Metals*	0.010	0.0084	0.091	0.077	0.000051	0.000043	0.10	0.087	0.25
Total Metals	1.3	1.1	0.12	0.097			1.5	1.2	3.5

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Infrabuild Recycling Hexham 1st Quarter Emissions Testing Report 2021 Commercial-in-Confidence

This page has been left blank intentionally.

Appendix A

Field Sheets (19 pages)

Appendix A Field Sheets (19 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Infrabuild Recycling Hexham

AECOM's Project Number: 60493017

Emission Source: Shredder Stack

Date Sampled: 9-Apr-21

ANALYTE(S) METHOD

Fine Particulate (PM10) NSW EPA OM - 5

Total Particulate NSW EPA TM - 15

Hazardous Substances (Metals) NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Sam Hamilton

Nick Stanning

for

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham

AECOM's Project No: 60493017

Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Measurement/Observations					
Stack Intern	al Dimensions:				
Diameter	760	mm	Cross Sectional Area	= 0.45 m ²	
OR	Length	Width			
Length/Widt	_		Minimum No. of		
Equivalent [mm	sampling points=	12	
Distance fro	m sampling plane to		Total No. of sampling	points =	12
nearest dist	urbances:			PM2.5/10=	12
			No. of sampling traver	ses/ports	
Upstream (r	m) = 5		sampled =		2
No. Diamete	ers = 6.6			PM2.5/10=	2
Type of Ups	stream Disturbance:	Fan Entry	No. of sampling points	on each	
Downstrean	n (m) = 2		traverse/port =		6
No. Diamete				PM2.5/10=	6
Type of Dov	wn Stream Disturbance:	Stack Exit			
			Exclusion of any samp	le point	
Position of e	each sampling point, for ea	ach traverse:	numbers - comments:	•	
	1 01				
	Α	В	PM10/2.5 A	PM2.5/10	В
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot dis	tances
1	33	3	33	3	
2	111	81	111	81	
3	225	195	225	195	
4	535	505	535	505	
5	649	619	649	619	
6	727	697	727	697	
7					
8					
9					
10			Check of total points a	gainst	
11			minimum, (yes/no) - co	-	
12					
13]		
14					
15	_]		
16	_]		
17	_]		
18	_]	/	
19			General Comments:	.1.1/	
20 🛆 -			011/1//		
AM7 >			//// / W	1	
Signed:			Checked:		
	V				

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	9:35	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:35	0	20.9	0.0
2	9:36	0	20.9	0.0
3	9:37	0	20.9	0.0
4	9:38	0	20.9	0.0
5	9:39	0	20.9	0.0
6	9:40	0	20.9	0.0
7	9:41	0	20.9	0.0
8	9:42	0	20.9	0.0
	Averages:	0.0 ppr	n 20.9 %	0.0 %

Moisture content (M3): 0.98
Moisture percentage (M2): 1.60 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.8 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O:	1.60 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	10:45	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:45	0	20.9	0.0
2	10:46	0	20.9	0.0
3	10:47	0	20.9	0.0
4	10:48	0	20.9	0.0
5	10:49	0	20.9	0.0
6	10:50	0	20.9	0.0
7	10:51	0	20.9	0.0
8	10:52	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3): 0.98
Moisture percentage (M2): 2.11 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.4 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.5 %,(wet)	
H ₂ O:	2.11 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10)
Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	10:22	Barometric P	ressure :	1006	hPa
Page No. :		Pitot Correction Factor :		0.84	
Sampling Port No:	1 to 2	Stack Gas De		1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
r not rubo rypo .		Max.			(0 0, 1101, 17111)
	Distance	Differential			
Sampling Position	from far wall		Max Temp. °C	Max Temp. (Ts)	
No.	(mm)	ΔP , kilo	Max remp. C	K	(Vs) m/s
	(******)	Pascals			
1/1	3	0.028	25.0	298.2	5.9
1/2	81	0.032	26.0	299.2	6.3
1/3	195	0.049	26.0	299.2	7.7
1/4	505	0.039	26.0	299.2	6.9
1/5	619	0.041	25.0	298.2	7.1
1/6	697	0.056	25.0	298.2	8.2
2/1	3	0.058	26.0	299.2	8.4
2/2	81	0.064	25.0	298.2	8.8
2/3	195	0.048	25.0	298.2	7.6
2/4	505	0.036	24.0	297.2	6.6
2/5	619	0.031	25.0	298.2	6.2
2/6	697	0.052	25.0	298.2	7.9
A. (0.77.77.7			25.0	200 5	7.0
Average			25.3	298.5	7.3

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -4.6 mm
Absolute pressure in stack (hPa): 1005.55 hPa

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: fine7 Sample Nozzle Area (An): 2.82 x 10⁻⁵m²

 Sampling Port No.:
 1 to 2
 Thimble No:
 T30

 Page No:
 1 of 1
 Blank thimble No:
 0

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

 Meter start:
 5891.5364 Meter finish:
 5891.5364 Meter start:
 5892.5714 Meter finish:
 5892.5714 Time start:
 5892.5714 Meter finish:
 5892.5714 Meter finish:
 10:55 Time finish:
 10:56 Time finish:

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1006 hPa (start); 1006 hPa (finish)

Meter start: 5891.5472 Time start: 9:35

Meter correction factor (GMf): 0.9805

	Stopwatch						
	Time at		Isokinetic			Impinger	Flowrate
Sampling	Sampling	Distance from	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	far wall (mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:15	33	13.1	24.0	22.0		Yes
1/2	0:05:30	111	13.1	26.0	22.0		Yes
1/3	0:06:45	225	13.1	27.0	22.0		Yes
1/4	0:06:15	535	13.1	28.0	23.0		Yes
1/5	0:06:15	649	13.1	29.0	24.0		Yes
1/6	0:07:15	727	13.1	29.0	24.0		Yes
2/1	0:07:30	33	13.1	30.0	24.0		Yes
2/2	0:07:45	111	13.1	31.0	25.0		Yes
2/3	0:07:00	225	13.1	31.0	26.0		Yes
2/4	0:06:00	535	13.1	32.0	26.0		Yes
2/5	0:05:30	649	13.1	33.0	27.0		Yes
2/6	0:07:00	727	13.1	33.0	27.0		Yes
		1			1		
		1			1		
		1			1		
					1		
Averages				29.4	24.3	no result	
Meter Finish		5892 5696		Time Finish:		10:53	

Meter Finish:5892.5696Time Finish:10:53Total Condensate collected:5 mlSilica gel No(s) used:M040

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: s3 Sample Nozzle Area (An): 2.93 x 10⁻⁵m²

Sampling Port No.: 1 to 2 Thimble No: S95

Page No: 1 of 1 Blank thimble No:

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

 Meter start:
 49.7362 Meter finish:
 49.7362 Meter start:
 50.7302 Meter finish:
 50.7302 Time start:

 Time start:
 9:26 Time finish:
 9:27 Time start:
 10:56 Time finish:
 10:57

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1006 hPa (start); 1006 hPa (finish)

Meter start: 49.7414 Time start: 9:35

Meter correction factor (GMf): 0.9937

	Stopwatch						
	Time at		Isokinetic			Impinger	Flowrate
Sampling	Sampling	Distance from	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	far wall (mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:30	33	10.2	22.0	18.0	. ` ′	Yes
1/2	0:13:00	111	10.9	25.0	19.0		Yes
1/3	0:19:30	225	13.3	25.0	20.0		Yes
1/4	0:26:00	535	11.9	27.0	21.0		Yes
1/5	0:32:30	649	12.3	28.0	22.0		Yes
1/6	0:39:00	727	14.2	28.0	23.0		Yes
2/1	0:45:30	33	14.5	29.0	24.0		Yes
2/2	0:52:00	111	15.2	29.0	24.0		Yes
2/3	0:58:30	225	13.2	30.0	25.0		Yes
2/4	1:05:00	535	11.5	31.0	26.0		Yes
2/5	1:11:30	649	10.7	31.0	27.0		Yes
2/6	1:18:00	727	13.7	32.0	27.0		Yes
		ļ					
					-		
					-		
 					1		
A				00.4	00.0		
Averages		50.7074		28.1	23.0	no result	

Meter Finish:50.7274Time Finish:10:53Total Condensate collected:10 mlSilica gel No(s) used:G003

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: xi Sample Nozzle Area (An): 3.76 x 10⁻⁵m²

Sampling Port No.: 1 to 2 Thimble No: 0

Page No: 1 of 1 Blank thimble No:

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

 Meter start:
 39434.0082 Meter finish:
 39434.0082 Meter start:
 39435.3104 Meter finish:
 39435.3104 Meter finish:
 39435.3104 Meter finish:
 10:57 Time finish:
 10:58

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1006 hPa (start); 1006 hPa (finish)

Meter start: 39434.0150 Time start: 9:35

Meter correction factor (GMf): 1.0153

	Stopwatch						
	Time at		Isokinetic			Impinger	Flowrate
Sampling	Sampling	Distance from	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	far wall (mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:30	33	13.4	32.0	30.0		Yes
1/2	0:13:00	111	14.3	31.0	30.0		Yes
1/3	0:19:30	225	17.4	31.0	30.0		Yes
1/4	0:26:00	535	15.6	31.0	29.0		Yes
1/5	0:32:30	649	16.1	30.0	28.0		Yes
1/6	0:39:00	727	18.6	29.0	28.0		Yes
2/1	0:45:30	33	19.0	29.0	27.0		Yes
2/2	0:52:00	111	20.0	28.0	27.0		Yes
2/3	0:58:30	225	17.3	28.0	26.0		Yes
2/4	1:05:00	535	15.0	27.0	25.0		Yes
2/5	1:11:30	649	14.1	27.0	25.0		Yes
2/6	1:18:00	727	17.9	27.0	24.0		Yes
							_
							_
							_
Averages				29.2	27.4	no result	
Meter Finish:		39435 3076		Time Finish:		10:53	

Meter Finish:39435.3076Time Finish:10:53Total Condensate collected:8 mlSilica gel No(s) used:GO48

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 9-Apr-21

Client: Infrabuild Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time:		Barometric P			hPa
Page No. :		Pitot Correction		0.84	3
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S		T		(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential	_	Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
	(mm)	ΔP, kilo			(10)
4 /4		Pascals	00.0	004.0	
1/1	3	0.021	28.0	301.2	5.0
1/2	81	0.024	28.0	301.2	5.4
1/3	195	0.037	28.0	301.2	6.8
1/4	505	0.041	28.0	301.2	7.1
1/5	619	0.051	28.0	301.2	7.9
1/6	697	0.056	28.0	301.2	8.3
0/4		0.057	00.0	004.0	0.4
2/1	3	0.057	28.0	301.2	8.4
2/2	81	0.046	28.0	301.2	7.5
2/3	195	0.043	28.0	301.2	7.3
2/4	505	0.036	28.0	301.2	6.7
2/5	619	0.026	28.0	301.2	5.7
2/6	697	0.030	28.0	301.2	6.1
Average			28.0	301.2	6.9

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -5.2 mm
Absolute pressure in stack (hPa): 1005.49 hPa

Q4AN(EV)-332-FM31

Stack Analysis - Hazardous Substances Elemental Analysis Results

9-Apr-21 Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oixdi	sable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	$KMnO_4/$ $H_2SO_4 +$ Rinses (mg) $(5B)$	Residue Rinse 8N HCl (mg) (lf Required) (5C)
Antimony	<0.0001	0.00005			
Arsenic	0.00017	<0.0001			
Beryllium	0.00001	<0.0001			
Cadmium	0.0002	0.00185			
Chromium	0.0012	0.0194			
Cobalt	0.00002	0.00025			
Copper	0.00152	0.00175			
Lead	0.0017	0.00155			
Magnesium	0.0404	0.0044			
Manganese	0.0048	0.0579			
Mercury	<0.0001	<0.0001	< 0.0001	0.0000513	<0.0001
Nickel	0.00182	0.0097			
Selenium	0.00004	0.00035			
Thallium	<0.0001	<0.0001			
Tin	0.00079	<0.0089			
Vanadium	<0.0002	< 0.0005			
Zinc	1.29	0.0174			

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Client: Infrabuild Recycling Hexham 9-Apr-21 60493017 Stack/Duct Description: AECOM's Project No:

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.0001	<0.0000847	0.000050	0.000042			0.000050	0.000042	0.00012
Arsenic	0.00017	0.00014	< 0.0001	<0.0000847			0.00017	0.00014	0.00041
Beryllium	0.000010	0.0000085	<0.0001	<0.0000847			0.000010	0.0000085	0.000024
Cadmium	0.00020	0.00017	0.0019	0.0016			0.0021	0.0018	0.0051
Chromium	0.0012	0.0010	0.019	0.016			0.021	0.01780	0.051
Cobalt	0.000020	0.000017	0.00025	0.00021			0.00027	0.00023	0.00066
Copper	0.0015	0.0013	0.0018	0.0015			0.0033	0.0028	0.0080
Lead	0.0017	0.0014	0.0016	0.0013			0.0033	0.0028	0.0080
Magnesium	0.040	0.034	0.0044	0.0037			0.045	0.038	0.11
Manganese	0.0048	0.0041	0.058	0.049			0.063	0.053	0.15
Mercury	< 0.0001	< 0.0000847	< 0.0001	< 0.0000847	0.000051	0.000043	0.000051	0.000043	0.00012
Nickel	0.0018	0.0015	0.0097	0.0082			0.012	0.010	0.029
Selenium	0.000040	0.000034	0.00035	0.00030			0.00039	0.00033	0.00095
Thallium	< 0.0001	< 0.0000847	< 0.0001	< 0.0000847			< 0.0001	< 0.0000847	< 0.000243
Tin	0.00079	0.00067	<0.0089	< 0.00754			0.00079	0.00067	0.0019
Vanadium	< 0.0002	< 0.000169	< 0.0005	< 0.000423			< 0.00025	<0.000212	<0.000607
Zinc	1.3	1.1	0.017	0.015			1.3	1.10	3.2
Total Hazardous Metals*	0.010	0.0084	0.091	0.077	0.000051	0.000043	0.10	0.087	0.25
Total Metals	1.3	1.1	0.12	0.097			1.5	1.2	3.5

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

STACK ANALYSIS - PM10 CALCULATIONS

9-Apr-21	Client: I	nfrabuild Recy	cling Hexham
%			
0.0			
20.9			
79.1			
0.02	Mo-	0.98	
0.02	1413—	0.50	
(Dry Basis)			
(2.) 200.0)			
28.84			
28.66			
100549	29.68		
	29.68		
°C	°E		
•	•		
	82.4		
26.9			
	183.3		
fs3/min	m3/min	I /min	1./0
	0.0 20.9 79.1 0.02 (Dry Basis) 28.84 28.66 Pascals 100600 100549	% 0.0 20.9 79.1 0.02 M ₃ = (Dry Basis) 28.84 28.66 Pascals in. Hg 100600 29.70 100549 29.68 29.68 °C °F 28.0 82.4 26.9 183.3	60493017 Stack/Duct Description: Si % 0.0 20.9 79.1 0.02 M ₃ = 0.98 (Dry Basis) 28.84 28.66 Pascals in. Hg 100600 29.70 100549 29.68 29.68 °C °F 28.0 82.4 26.9 183.3

ft³/min 0.46

m³/min 0.0161

6. Nozzle Velocity, Rmin and Rmax

Cyclone Flow Rate

Nozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.128	84.80	27.91	0.761	1.227	64.57	21.19	104.04	34.13
1	0.136	74.98	24.68	0.753	1.232	56.48	18.53	92.39	30.31
2	0.159	54.81	18.04	0.723	1.251	39.63	13.00	68.56	22.49
3	0.184	41.22	13.57	0.676	1.277	27.88	9.15	52.62	17.26
4	0.177	44.19	14.55	0.690	1.269	30.51	10.01	56.10	18.41
5	0.211	31.16	10.26	0.595	1.314	18.55	6.09	40.95	13.44
6	0.217	29.67	9.77	0.574	1.322	17.05	5.59	39.23	12.87
7	0.236	24.99	8.23	0.468	1.355	12.49	4.10	33.86	11.11
8	0.275	18.39	6.05	#NUM!	1.434	9.19	3.02	26.37	8.65
9	0.304	15.06	4.96	#NUM!	1.504	7.53	2.47	22.59	7.41
10	0.345	11.71	3.86	#NUM!	1.617	5.86	1.92	17.57	5.77
11	0.394	8.94	2.94	#NUM!	1.777	4.47	1.47	13.41	4.40
		Nozzle	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
7	0.236	0.006	0.000028	13.1					

L/min 16.08

L/s 0.27

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

Date: AECOM's Project No: 9-Apr-21 Client: Infrabuild Recycling Hexham 60493017 Stack/Duct Description: Shredder Stack

7.Sampling Time Total Run Time 78 Number of points

Velocity Head (pitot)	Vel Head	Sqr Root	Dwell time
Pa	in H20		mins
20.60	0.08	0.29	4.8
23.54	0.09	0.31	5.1
37.28	0.15	0.39	6.4
41.20	0.17	0.41	6.8
	0.17	0.41	0.0
51.01	0.20	0.45	7.5
55.92	0.22	0.47	7.9
56.90	0.23	0.48	7.9
46.11	0.19	0.43	7.1
43.16	0.17	0.42	6.9
36.30	0.15	0.38	6.3
26.49	0.11	0.33	5.4
30.41	0.12	0.35	5.8
		1	
	+	1	
	1	1	
	1	1	
	1	1	
	<u> </u>	<u> </u>	
	<u> </u>	<u> </u>	
-		1	
		i e	
	1	†	
	+	 	
	ļ	ļ	
·		1	
		1	
		ļ	
		1	
		1	
	1	İ	
	+	 	
	+	 	
	ļ	ļ	
	<u> </u>	L	
·		1	
		i e	
	+	t e	
	+	 	
	1	1	
		1	
	1	1	
	1	1	
	+	 	
		 	
·		1	
	1	1	
	+	 	
		 	
-		1	
		i e	
	1	1	
	1	1	
		1	
·		1	
	Average	0.39	78.00
	Sauara		70.00
	Square	0.15	

12			
Total time	Full hours	Full	Seconds
min	1 dii fiodi 5	minutes	Occornas
5.3	0	5	15
5.3 10.8	0	5 10	45
17.5	0	17	30
23.8	0	23	45
23.8 30.0	0	23 30	0
37.3	0	37	15
07.0	- ŭ		
44.8	0	44	45
52.5	0	52	30
59.5	0	59	30
65.5	1	5	30
65.5 71.0	1	11	0
78.0	1	18	0

Aerodynamic Cut Size (u_{cyc}) 185.3

PM₁₀ Flow rate at actual cyclone conditions (Q_s)
0.0122

Actual D₅₀

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Client: Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

1.0025 m³ Average barometric Metered volume (MV₃):

pressure (P_{BARO}) 26.9 °C Average gas meter temp. (T_{M,2}): 1006 hPa

> Average pressure at meter 300.1 K

> > $(P_{M,2})$ 1006.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

0.9061 m³ 1 atm pressure):

(B) PM10 concentration at standard conditions

Blank thimble No.: Blank weight: g Thimble No. used: PM10 Weight 0.0007 g T30

Final PM10 Weight (Mp1): 0.00070 g

0.00077 g/m³ (0°C, dry gas, PM10 Concentration (C1): $=M_{D1}/MV_4=$

1atm pressure)

;and $C_2 =$ 0.77 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.00077 g/m3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

0.77 mg/m³ (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 20.9 %

Therefore, C_b: $=C_a x (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.11 g/m³ (0°C, dry gas, 1atm pressure,

 O_2)

;and $C_{h1} =$ 110 mg/m³ (0°C, dry gas, 1atm pressure,

 O_2)

(C) Moisture content

Silica Gel Number: M040

9.22 g (from laboratory report) 5 mL (=grams) (recorded on Volume of Water Vapour Condensed $(V_{wc(std)}) =$ 0.0067

Volume of Water Vapour Condensed $(V_{wsg(std)}) =$

Laboratory Form 108) 0.0123

Therefore, $B_{ws} =$ $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

2.05 % $B_{ws} =$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED Fine Particulate (PM10)

- (D) Gas Composition and Density (Re-calculation)
- 1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:
- (ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

1.158 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

7.30 m/s

(ii) Average of post-sampling velocities:

6.85 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

7.08 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and

(ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A = 3.21 m³/s (stack conditions)

Qstd = Qstack x

Ps x (Pstd)

(Tstd) x (100 - B_w) 100 (Ts)

Qstd =

2.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

$$Rm = C_{1a} x Qstd = 0.0022 g/s (0°C, dry gas, 1 atm pressure)$$

$$= 2.2 mg/s (0°C, dry gas, 1 atm pressure)$$

$$C_{1a} \times Qstd = 0.0022$$
 g/s (0°C, dry gas, 1 atm pressure 12% CO_2)
= 2.2 mg/s (0°C, dry gas, 1 atm pressure 12% CO_2)

$$C_{1a}$$
 x Qstd = 0.31 g/s (0°C, dry gas, 1 atm pressure 7% O_2)
= 310 mg/s (0°C, dry gas, 1 atm pressure 7% O_2)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

9-Apr-21 Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

0.9798 m³ Average barometric Metered volume (MV₃):

pressure (P_{BARO}) 25.5 °C Average gas meter temp. (T_{M,2}): 1006 hPa

> Average pressure at meter 298.7 K

> > $(P_{M,2})$ 1006.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

0.8897 m³ 1 atm pressure):

(B) Total Particulate concentration at standard conditions

Blank thimble No.: Blank weight: g Thimble No. used: S95 Total Particulate Weight 0.0052 g

Final Total Particulate Weight (Mp1): 0.00520 g

0.0058 g/m³ (0°C, dry gas, Total Particulate Concentration (C1): $=M_{D1}/MV_4=$

1atm pressure)

;and $C_2 =$ 5.8 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.0058 g/m3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

5.8 mg/m³ (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 20.9 %

Therefore, C_b: $=C_a x (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.81 g/m³ (0°C, dry gas, 1atm pressure,

 O_2)

;and $C_{h1} =$ 810 mg/m³ (0°C, dry gas, 1atm pressure,

 O_2)

Laboratory Form 108)

(C) Moisture content

Silica Gel Number: G003

9.8 g (from laboratory report) 10 mL (=grams) (recorded on Volume of Water Vapour Condensed $(V_{wc(std)}) =$ 0.0133

Volume of Water Vapour Condensed $(V_{wsg(std)}) =$ 0.0131

Therefore, $B_{ws} =$ $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

2.88 % $B_{ws} =$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED Total Particulate

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)
- (ii) Re-calculated gas density based on moisture

content in (c):

1.29 kg/m 3 (0°C, wet, 1 atm pressure) 1.29 kg/m 3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.167 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

7.30 m/s

(ii) Average of post-sampling velocities:

6.85 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 7.08 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and

(ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A =$ 3.21 m³/s (stack conditions)

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $2.8 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

$$Rm = C_{1a} x Qstd = 0.016 g/s (0°C, dry gas, 1 atm pressure)$$

$$= 16 mg/s (0°C, dry gas, 1 atm pressure)$$

$$C_{1a}$$
 x Qstd = 0.016 g/s (0°C, dry gas, 1 atm pressure 12% CO_2)
= 16 mg/s (0°C, dry gas, 1 atm pressure 12% CO_2)

$$C_{1a}$$
 x Qstd = 2.3 g/s (0°C, dry gas, 1 atm pressure 7% O_2)
= 2300 mg/s (0°C, dry gas, 1 atm pressure 7% O_2)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

1.3124 m³ Average barometric Metered volume (MV₃):

pressure (P_{BARO}) 28.3 °C Average gas meter temp. (T_{M.2}): 1006 hPa

> Average pressure at meter 301.5 K

> > $(P_{M,2})$ 1006.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1.1807 m³ 1 atm pressure):

(B) Metals concentration at standard conditions

Blank thimble No .: Blank weight: g Thimble No. used: 0 Metals Weight 0.00010 g

Final Metals Weight (Mp1): 0.00010 g

0.000087 g/m³ (0°C, dry gas, Metals Concentration (C1): $=M_{D1}/MV_4=$

1atm pressure)

;and $C_2 =$ 0.087 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.000087 g/m3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

0.087 mg/m³ (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 20.9 %

Therefore, C_b: $=C_a x (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.012 g/m³ (0°C, dry gas, 1atm pressure,

;and $C_{h1} =$ 12 mg/m³ (0°C, dry gas, 1atm pressure,

 O_2)

(C) Moisture content

Silica Gel Number: GO48

4.46 g (from laboratory report) 8 mL (=grams) (recorded on Volume of Water Vapour Condensed $(V_{wc(std)}) =$ 0.0107

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsq(std)}) = 0.0060

Therefore, $B_{ws} =$ $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

1.39 % $B_{ws} =$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.158 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 7.30 m/s

(ii) Average of post-sampling velocities: 6.85 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 7.08 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

($\mbox{\bf Note} \colon \mbox{(Vs)}$ is from all individual data, $\mbox{\bf not}$ from (i) and

(ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 3.21 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $2.9 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

g/s (0°C, dry gas, 1 atm pressure C_{1a} x Qstd = 0.00025 Rm =0.25 mg/s (0°C, dry gas, 1 atm pressure C_{1a} x Qstd = 0.00025 g/s (0°C, dry gas, 1 atm pressure 12% CO_2) 0.25 mg/s (0°C, dry gas, 1 atm pressure 12% CO_2) C_{1a} x Qstd = 0.035 g/s (0°C, dry gas, 1 atm pressure 7% O_2) 35 mg/s (0°C, dry gas, 1 atm pressure 7% O_2)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK INFRABUILD RECYCLING HEXHAM

9-Apr-21 FINE PARTICULATE (PM10) TOTAL PARTICULATE HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	26.6 °C	299.8 K
Stack pressure (average)	1006 hPa	
Stack gas velocity (average, stack conditions)	7.1 m/s	
Stack gas flowrate (stack conditions)	3.2 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.8 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	9:35 -	10:53
Fine Particulate (PM10) Mass	0.7 mg	
Gas Volume Sampled	0.906 m ³	
Fine Particulate (PM10) Emission*1	0.77 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	2.2 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	9:35 -	10:53
Total Particulate Mass	5.2 mg	
Gas Volume Sampled	0.89 m ³	
Total Particulate Emission*1	5.8 mg/m ³	
Total Particulate Mass Emission Rate*2	16 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	9:35 -	10:53
Hazardous Substances (Metals) Mass	0.103 mg	
Gas Volume Sampled	1.18 m ³	
Hazardous Substances (Metals) Emission*1	0.087 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.25 mg/s	
Regulatory Limit	N/A	
Moisture Content (%)	2.1	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	
Notes: *1 Emission concentration at Standard conditions of 0°C 1 atm. dry gas		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (9 pages)

Appendix B Laboratory Results (9 pages)

CERTIFICATE OF ANALYSIS

Work Order : EN2102943

Client : AECOM Australia Pty Ltd

Contact : MR CYE BUCKLAND

Address : 17 WARABROOK BOULEVARDE

WARABROOK NSW, AUSTRALIA 2304

Telephone : +61 02 4911 4900

: 60493017 Project Order number

: 60493017 C-O-C number

Sampler Site

Quote number : NE/024/21

No. of samples received : 10 No. of samples analysed : 5

Page : 1 of 2

Laboratory : Environmental Division Newcastle

Contact : Tahlee Brook

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +61 2 4014 2500 **Date Samples Received** : 13-Apr-2021 15:32

Date Analysis Commenced : 21-Apr-2021

Issue Date : 22-Apr-2021 17:24

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW Page : 2 of 2 Work Order : EN2102943

Client : AECOM Australia Pty Ltd

Project : 60493017

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: EMISSIONS (Matrix: AIR)			Sample ID	Т30	S95	G003	M040	G048	
		Sampli	ng date / time	[13-Apr-2021]	[13-Apr-2021]	[13-Apr-2021]	[13-Apr-2021]	[13-Apr-2021]	
Compound	CAS Number	LOR	Unit	EN2102943-003	EN2102943-004	EN2102943-005	EN2102943-006	EN2102943-007	
				Result	Result	Result	Result	Result	
EA143B: Total Particulate Matter -	EA143B: Total Particulate Matter - Stack Tests								
Moisture @ 105°C		0.01	g			9.80	9.22	4.46	
Particulate Matter		0.0001	g	0.0007	0.0052				

Address

LABORATORY DETAILS CLIENT DETAILS -

Cye Buckland Contact AECOM Australia Pty Ltd Client

Address 17 Warabrook Boulevard

Warabrook

SYDNEY NSW 2304

02 8295 3600

02 8934 0001

cye.buckland@aecom.com Email

60493017/6.1 Project 60493017/6.1 Order Number

Adam Atkinson Manager Laboratory

SGS Melbourne EH&S

10/585 Blackburn Road Notting Hill Victoria 3168

+61395743200 Telephone +61395743399 Facsimile

Au.SampleReceipt.Melbourne@sgs.com Email

SGS Reference ME319991 R0 15 Apr 2021 Date Received 22 Apr 2021 Date Reported

COMMENTS

Telephone

Facsimile

Samples

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

Christopher BENNETT Laboratory Technician

Ryan ZHANG

Inorganics Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Bldg 10, 585 Blackburn Rd

Notting Hill VIC

t +61 3 9574 3200 Australia

f +61 3 9574 3399

www.sgs.com.au

ME319991 R0

	s	nple Numbe ample Matr Sample Dat Sample Nam	ix Filter	ME319991.002 Impinger 09 Apr 2021 Shredder_Metals 3	ME319991.003 Impinger 09 Apr 2021 Shredder_Metals 4	ME319991.004 Impinger 09 Apr 2021 Shredder_Metals 5A
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA	M29 Method: EPA2	9_FILT	Tested: 16/4/2021			
Sb	μg total	0.05	<0.05	-	-	-
As	μg total	0.05	0.96	-	-	-
Ве	μg total	0.05	0.07	-	-	-
Cd	μg total	0.05	0.25	-	-	-
Cr	μg total	0.05	3.4	-	-	-
Co	μg total	0.05	0.07	-	-	-
Cu	μg total	0.05	2.1	-	-	-
Pb	μg total	0.05	3.1	-	-	-
Mg	μg total	0.05	290	-	-	-
Mn	μg total	0.05	8.4	-	-	-
Hg	μg total	0.05	<0.05	-	-	-
Ni	μg total	0.05	2.1	-	-	-
Se	μg total	0.05	0.16	-	-	-
ТІ	μg total	0.05	<0.05	-	-	-
Sn	μg total	0.05	0.77	-	-	-
V	μg total	0.25	<0.25	-	-	-
Zn	μg total	0.05	8300	-	-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug		_	/IP Tested: 20/4/2			
Sb	μg total	0.1	-	<0.1	0.1	-
As	μg total	0.1	-	<0.1	<0.1	-
Be	μg total	0.1	-	<0.1	<0.1	-
Cd	μg total	0.1	-	<0.1	1.9	-
Cr	μg total	0.1	-	0.1	20	-
Со	μg total	0.1	-	<0.1	0.3	-
Cu	μg total	0.1	-	<0.1	1.8	-
Pb	μg total	0.1	-	0.1	1.6	-
Mg	μg total	0.1	-	0.8	5.9	-
Mn	μg total	0.1	-	1.0	60	-
Hg	μg total	0.1	-	<0.1	<0.1	<0.1
Ni	μg total	0.1	-	0.1	10	-
Se	μg total	0.1	-	<0.1	0.4	-
TI	μg total	0.1	-	<0.1	<0.1	-
Sn	μg total	0.1	-	0.2	4.5	-
V	μg total	0.1	-	0.2	0.1	-
Zn	μg total	0.1	-	1.1	27	-
Sample Volume*	mL	-	-	110	300	120

22-April-2021 Page 2 of 7

ME319991 R0

			KMNO4	ME319991.006 Impinger 09 Apr 2021 Shredder_Metals 5C	ME319991.007 Impinger 12 Apr 2021 Metals 8A	ME319991.008 Impinger 12 Apr 2021 Metals 8B
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA	A M29 Method: E	PA29_FILT T	ested: 21/4/2021			
Sb	μg total	0.05	-	-	-	-
As	μg total	0.05	-	-	-	-
Ве	μg total	0.05	-	-	-	-
Cd	μg total	0.05	-	-	-	-
Cr	μg total	0.05	-	-	-	-
Со	μg total	0.05	-	-	-	-
Cu	μg total	0.05	-	-	-	-
Pb	μg total	0.05	-	-	-	-
Mg	μg total	0.05	-	-	-	-
Mn	μg total	0.05	-	-	-	-
Hg	μg total	0.05	-	-	-	-
Ni	μg total	0.05	-	-	-	-
Se	μg total	0.05	-	-	-	-
TI	μg total	0.05	-	-	-	-
Sn	μg total	0.05	-	-	-	-
V	μg total	0.25	-	-	-	-
Zn	μg total	0.05	-	-	-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (u	g total) Method:	EPA29_METIM	P Tested: 16/4/2	2021		
Sb	μg total	0.1	-	-	<0.1	-
As	μg total	0.1	-	-	<0.1	-
Ве	μg total	0.1	-	-	<0.1	-
Cd	μg total	0.1	-	-	<0.1	-
Cr	μg total	0.1	-	-	<0.1	-
Со	μg total	0.1	-	-	<0.1	-
Cu	μg total	0.1	-	-	<0.1	-
Pb	μg total	0.1	-	-	<0.1	-
Mg	μg total	0.1	-	-	0.4	-
Mn	μg total	0.1	-	-	1.6	-
Hg	μg total	0.1	0.1	<0.1	<0.1	<0.1
Ni	μg total	0.1	-	-	<0.1	-
Se	μg total	0.1	-	-	<0.1	-
ТІ	μg total	0.1	-	-	<0.1	-
Sn	μg total	0.1	-	-	<0.1	-
V	μg total	0.1	-	-	0.2	-
Zn	μg total	0.1	-	-	9.4	-
Sample Volume*	mL	_	390	250	310	98

22-April-2021 Page 3 of 7

ME319991 R0

		Sample Number Sample Matrix Sample Date Sample Name	ME319991.009 Impinger 12 Apr 2021 Metals 9	ME319991.010 KMNO4 12 Apr 2021 Metals 10	ME319991.011 Impinger 12 Apr 2021 Metals 11	ME319991.012 Filter 12 Apr 2021 Metals 12
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 U	SEPA M29 Method: I	EPA29_FILT Te	ested: 21/4/2021			
Sb	μg total	0.05	-	-	-	<0.05
As	μg total	0.05	-	-	-	0.79
Be	μg total	0.05	-	-	-	0.06
Cd	μg total	0.05	-	-	-	<0.05
Cr	μg total	0.05	-	-	-	2.3
Со	μg total	0.05	-	-	-	<0.05
Cu	μg total	0.05	-	-	-	0.58
Pb	μg total	0.05	-	-	-	1.5
Mg	μg total	0.05	-	-	-	250
Mn	μg total	0.05	-	-	-	3.0
Hg	μg total	0.05	-	-	-	<0.05
Ni	μg total	0.05	-	-	-	0.38
Se	μg total	0.05	-	-	-	0.12
TI	μg total	0.05	-	-	-	<0.05
Sn	μg total	0.05	-	-	-	0.18
V	μg total	0.25	-	-	-	<0.25
Zn	μg total	0.05	-	-	-	7000
Metals in Impingers M29 ETC MA-1400.IMP.M29.0		0.05			-	7000
					-	7000
Metals in Impingers M29 ETC MA-1400.IMP.M29.0	06 (ug total) Method:	EPA29_METIMP	P Tested: 16/4/2	2021		
Metals in Impingers M29 ETC MA-1400.IMP.M29.0	D6 (ug total) Method:	EPA29_METIMF	Tested: 16/4/2	2021	-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As	D6 (ug total) Method: µg total µg total	0.1 0.1	Tested: 16/4/2	- -		- -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be	D6 (ug total) Method: μg total μg total μg total	0.1 0.1 0.1 0.1	Tested: 16/4/2 <0.1 <0.1 <0.1	2021	- - -	
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd	D6 (ug total) Method: μg total μg total μg total μg total μg total	0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 <0.1 <0.1 <0.1 <0.1		- - -	- - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr	Method: μg total	0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.6		- - - -	- - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.6 < 0.1		- - - - -	- - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	2021	- - - - - -	- - - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	2021 	- - - - - - -	- - - - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 1.1	2021	- - - - - - -	- - - - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.5	2021	- - - - - - - -	- - - - - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 16/4/2 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1		- - - - - - - - - - - - - - - - - - -	
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Continuous and the second se		- - - - - - - - - - - - - - - - - -	- - - - - - - - - -
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Continue of the second of the secon			
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se T1 Sn	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Continue of the continue of the conti	2021		
Metals in Impingers M29 ETC MA-1400.IMP.M29.0 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se T1	pg total 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	 Continue of the continue of the conti	2021			

22-April-2021 Page 4 of 7

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB040617	µg total	0.05	<0.05	104%
As	LB040617	µg total	0.05	<0.05	103%
Be	LB040617	µg total	0.05	<0.05	107%
Cd	LB040617	µg total	0.05	<0.05	101%
Cr	LB040617	µg total	0.05	<0.05	104%
Со	LB040617	µg total	0.05	<0.05	104%
Cu	LB040617	µg total	0.05	<0.05	106%
Pb	LB040617	µg total	0.05	<0.05	98%
Mg	LB040617	µg total	0.05	<0.05	105%
Mn	LB040617	µg total	0.05	<0.05	107%
Hg	LB040617	µg total	0.05	<0.05	101%
Ni	LB040617	µg total	0.05	<0.05	104%
Se	LB040617	µg total	0.05	<0.05	99%
П	LB040617	µg total	0.05	<0.05	105%
Sn	LB040617	μg total	0.05	<0.05	104%
V	LB040617	μg total	0.25	<0.25	104%
Zn	LB040617	μg total	0.05	<0.05	104%

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC Reference	Units	LOR	MB	LCS
Sb	LB040615	µg total	0.1	<0.1	%Recovery 102%
As	LB040615	µg total	0.1	<0.1	112%
Be	LB040615	µg total	0.1	<0.1	105%
Cd	LB040615	µg total	0.1	<0.1	101%
Cr	LB040615	µg total	0.1	<0.1	103%
Со	LB040615	µg total	0.1	<0.1	104%
Cu	LB040615	μg total	0.1	<0.1	105%
Pb	LB040615	μg total	0.1	<0.1	100%
Mg	LB040615	µg total	0.1	<0.1	105%
Mn	LB040615	µg total	0.1	<0.1	102%
Hg	LB040615	μg total	0.1	<0.1	
Ni	LB040615	µg total	0.1	<0.1	104%
Se	LB040615	μg total	0.1	<0.1	100%
П	LB040615	µg total	0.1	<0.1	105%
Sn	LB040615	µg total	0.1	<0.1	101%
V	LB040615	µg total	0.1	<0.1	103%
Zn	LB040615	µg total	0.1	<0.1	102%
Sample Volume*	LB040615	mL	-	1.0	NA

22-April-2021 Page 5 of 7

METHOD SUMMARY

ME319991 R0

 45	 -	\sim	

METHODOLOGY SUMMARY

EPA 29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A.

. Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM-MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

EPA29

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29, USEPA 3015A and USEPA 6020A.

Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

22-April-2021 Page 6 of 7

FOOTNOTES

FOOTNOTES

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting ↑↓ NATA accreditation does not cover the OFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte Indicates that both * and ** apply. NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

22-April-2021 Page 7 of 7

AECOM
AECOM Australia Pty Ltd
17 Warabrook Boulevard
Warabrook NSW 2304
PO Box 73
Hunter Region MC NSW 2310
Australia
T +61 2 4911 4900
F +61 2 4911 4999
www.aecom.com

ABN 20 093 846 925

This is the last page of the report