

2nd Quarter Emissions Testing Report 2019

Liberty Recycling Hexham

2nd Quarter Emissions Testing Report 2019

Liberty Recycling Hexham

Client: Liberty Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

07-Jun-2019

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 2nd Quarter Emissions Testing Report 2019

Ref 60493017

Date 07-Jun-2019

Prepared by Sharn Crosdale

Reviewed by Paul Wenta

AECOM Approved Signatory Chad Whitburn

Revision History

Dov	Davisian Data	Detaile	Authorised	
Rev	Revision Date	Details	Name/Position	Signature
0	07-Jun-19	Report for Issue	Chad Whitburn Associate Director - Compliance Services	alle
				0.00

Table of Contents

1.0	Introduct	tion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo		3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Sampling	g Location	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Append	dix A		
	Field She	ets (16 pages)	Α
Append	dix B		
	Laborato	ry Results (8 pages)	В
List of	Tables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	<u>)</u>	AECOM NATA Endorsed Methods	3
Table 3	3	Sampling Location Summary	4
Table 4		Shredder Baghouse Emission Results Summary, 22 May 2019	5
Table 5	5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	
		Results, 22 May 2019	6
Table 6	6	Hazardous Substances (Metals) Elemental Analysis Results, 22 May 2019	7

1

1.0 Introduction

AECOM was appointed by Liberty Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 22 May 2019 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 18854-0-M & 18854-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME310641 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in **Table 2**.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2	USEPA (2000) Method 5	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201A	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 22 May 2019.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regard to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 22 May 2019

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	22	100
Fine Particulate (PM ₁₀) (mg/m ³)	8.1	N/A
Lead (mg/m³)	0.098	5.0
Mercury (mg/m³)	0.000041	1.0
Total Hazardous Substances (Metals) (mg/m³)	0.18	N/A

Results from testing conducted on EPL Point 1 on 22 May 2019 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 22 May 2019

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	23.0	°C	296.2 K
Stack pressure (average)	1026	hPa	
Stack gas velocity (average, stack conditions)	6.6	m/s	
Stack gas flowrate (stack conditions)	3	m³/s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.8	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	10:22	-	11:46
Fine Particulate (PM ₁₀) Mass	8.8	mg	
Gas Volume Sampled	1.08	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	8.1	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate*2	23	mg/s	
Regulatory Limit	N/A		
Total Particulate Testing			
Test Period	10:22	-	11:46
Total Particulate Mass	19.7	mg	
Gas Volume Sampled	0.909	m^3	
Total Particulate Emission*1	22	mg/m³	
Total Particulate Mass Emission Rate*2	61	mg/s	
Regulatory Limit	100	mg/m³	
Hazardous Substances (Metals) Testing			
Test Period	10:22	-	11:46
Hazardous Substances (Metals) Mass	0.218	mg	
Gas Volume Sampled	1.23	m^3	
Hazardous Substances (Metals) Emission*1	0.18	mg/m³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.5	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	0.2		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

 $^{^*}$ 2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 22 May 2019

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.0010	0.00085	0.0003	0.0002			0.0013	0.0011	0.0030
Arsenic	0.00023	0.00019	<0.0002	<0.000163			0.00023	0.00019	0.00052
Beryllium	<0.00007	<0.0000571	<0.0001	<0.000816			<0.0001	<0.0000816	<0.000227
Cadmium	0.0028	0.0022	0.00085	0.00069			0.0036	0.0029	0.0082
Chromium	0.0012	0.0010	0.0041	0.0034			0.0053	0.0043	0.012
Cobalt	0.0004	0.00036	0.0064	0.0052			0.0068	0.0056	0.015
Copper	0.010	0.0085	0.0031	0.0025			0.013	0.011	0.030
Lead	0.12	0.094	0.0025	0.0020			0.12	0.098	0.27
Magnesium	0.065	0.053	0.0044	0.0036			0.069	0.056	0.16
Manganese	0.015	0.012	0.022	0.018			0.037	0.030	0.084
Mercury	<0.0001	<0.0000816	<0.0001	<0.0000816	0.000050	0.000041	0.000050	0.000041	0.00011
Nickel	0.0033	0.0027	0.039	0.032			0.042	0.034	0.095
Selenium	0.00027	0.00022	<0.0007	<0.000571			0.00027	0.00022	0.0006
Thallium	<0.0001	<0.0000816	<0.0001	<0.0000816			<0.0001	<0.0000816	<0.000227
Tin	0.0015	0.0012	0.00020	0.00016			0.0017	0.0014	0.0039
Vanadium	<0.0017	<0.00139	<0.002	<0.00163			<0.0001	<0.000816	<0.000227
Zinc	0.48	0.39	0.031	0.025			0.51	0.42	1.2
Total Hazardous Metals*	0.14	0.11	0.075	0.061	0.000050	0.000041	0.22	0.18	0.50
Total Metals	0.70	0.57	0.11	0.093			0.81	0.66	1.8

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

8

This page has been left blank intentionally.

Appendix A

Field Sheets (16 pages)

Appendix A Field Sheets (16 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Liberty Recycling Hexham

AECOM's Project Number:

60493017

Emission Source:

Shredder Stack

Date Sampled:

22-May-19

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Sharn Crosdale

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

22-May-19

Client:

Liberty Recycling Hexham

AECOM's Project No:

60493017

Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3: Hazardous Substances (Metals)

Diameter	Stack Into	mal Dimensions:	Measurement/Obse	valions		
Length Width Length Length Width Length Len	Stack inter	nai Dimensions.				
Color	Diameter	76	0 mm	Cross Sectional Area	0.45 m	2
Length/Width (mm) Equivalent Diameter N/A mm Minimum No. of sampling plane to nearest disturbances: Total No. of sampling points = 12 PM2.5/10 =				Gross Sestionary rea		
Distance from sampling plane to nearest disturbances:				Minimum No. of		
No. Distance from wall S-type Pitot distances Sample Sam			mm	sampling points=	12	
PM2.5/10 12	Distance fr	rom sampling plane to		Total No. of sampling	points =	12
No. of sampling traverses/ports Sampled = Sampled = PM2.5/10 = 2				, stant,		
Sampled = Sampled = 2	ilourout die	starbarroos.		No. of sampling trave		
No. Distance from wall S-type Pitot distances Distance from wall S-type Pitot distances Stack Exit Stack Exi	Upstream	(m) = 5			1932003/15	2
Type of Upstream Disturbance: Fan Entry Downstream (m) = 2				7.1.7	PM2.5/10=	
Downstream (m) = 2			Fan Entry	No. of sampling point	ts on each	
No. Diameters = 2.6 Type of Down Stream Disturbance: Stack Exit Position of each sampling point, for each traverse: A						6
Substitute					PM2.5/10=	
Exclusion of any sample point numbers - comments: Exclusion of any sample point numbers - comments:			: Stack Exit			
A B PM10/2.5 A PM2.5/10 B				Exclusion of any sam	ple point	
A B PM10/2.5 A PM2.5/10 B No. Distance from wall S-type Pitot distances Distance from wall S-Type Pitot distance 1 33 3 3 3 3 2 1111 81 111 81 3 225 195 225 195 4 535 505 535 505 5 649 619 649 619 6 727 697 727 697 7 8 9 9 10	Position of	each sampling point fo	r each traverse:			
No. Distance from wall S-type Pitot distances Distance from wall S-Type Pitot distance 1 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	22	Take Street Company (S.		to make the contract of		
No. Distance from wall S-type Pitot distances Distance from wall S-Type Pitot distance 1 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				125 00		
1 33 3 3 33 33 3 3 3 3 3 3 3 3 3 3 3 3		Α	The state of the s			
2 111 81 111 81 3 225 195 225 195 4 535 505 535 505 5 649 619 649 619 6 727 697 727 697 7 8 9	No.					distance
3						
4 535 505 535 505 6 649 619 649 619 6 727 697 727 697 8 9	2					
5 649 619 649 619 6 727 697 727 697 8 9						
5 649 619 649 619 6 727 697 727 697 8 9	4					
7 8 9 10 Check of total points against minimum, (yes/no) - comments: 12 13 14 15 16 17 18 19 General Comments:	5					
7 8 9 10 Check of total points against minimum, (yes/no) - comments: 12 13 14 15 16 17 18 19 General Comments:	6	727	697	727	697	
Check of total points against minimum, (yes/no) - comments: 12 13 14 15 16 17 18 19 General Comments:	7					
Check of total points against minimum, (yes/no) - comments: Check of total points against minimum, (yes/no) - comments: General Comments:	8					
11 minimum, (yes/no) - comments: 12						
12 13 14 15 16 17 18 19 20 General Comments: (3) (3) (4) (4) (5) (6) (7) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7						
13 14 15 16 17 18 19 20 General Comments:	11			minimum, (yes/no) -	comments:	
14 15 16 17 18 19 20 General Comments: (3) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	12					
15 16 17 18 19 20 General Comments:	13					
15 16 17 18 19 20 General Comments:	14					
17 18 19 20 General Comments: (3) 4 Aread						
18 19 20 General Comments:	16					
18 19 20 General Comments:						
19 General Comments: (3) / Araph						
20 (By 1/20)				General Comments:		
Comment of the state of the sta	7.79				, ,	
Signed: Checked / Du Malowol	(1/2	11	
AUDITOR CONTROL OF THE PROPERTY OF THE PROPERT	Signed:			Checked Dh	Monel	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date: 22-May-19

Client: Liberty Recycling Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start: 10:16		Sampling port No.: 1					
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)			
1	10:16	0	20.9	0.0			
2	10:17	0	20.9	0.0			
3	10:18	0	20.9	0.0			
4	10:19	0	20.9	0.0			
5	10:20	0	20.9	0.0			
6	10:21	0	20.9	0.0			
7	10:22	0	20.9	0.0			
8	10:23	0	20.9	0.0			
	Averages	0.0 ppr	n 20.9 %	0.0 %			

Moisture content (M3): 1.00
Moisture percentage (M2): 0.20 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.9 %,(wet)	
H ₂ O:	0.20 %(=M2)			
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, wet, 1 atm pressure)	
	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

22-May-19

Client:

Liberty Recycling Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	11:32	Sampling port No.: 1					
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)			
1	11:32	0	20.9	0.0			
2	11:33	0	20.9	0.0			
3	11:34	0	20.9	0.0			
4	11:35	0	20.9	0.0			
5	11:36	0	20.9	0.0			
6	11:37	0	20.9	0.0			
7	11:38	0	20.9	0.0			
8	11:39	0	20.9	0.0			
	Averages:	0.0 ppm	20.9	6 0.0 %			

Moisture content (M3):

1.00

Moisture percentage (M2):

0.20 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.9 %,(wet)	
H ₂ O:	0.20 %(=M2)			
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 22-May-19

Client: Liberty Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	10:15	Barometric Pr			hPa
Page No.:	1 of 1	Pitot Correction Factor :		0.84	3
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.29	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position No.	Distance from far wall (mm)	Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	0.042	22.0	295.2	7.0
1/2	81	0.037	22.0	295.2	6.6
1/3	195	0.054	22.0	295.2	7.9
1/4	505	0.047	22.0	295.2	7.4
1/5	619	0.042	22.0	295.2	7.0
1/6	697	0.046	22.0	295.2	7.3
2/1	3	0.024	22.0	295.2	5.2
2/1	81	0.024	22.0	295.2	5.6
2/3	195	0.020	22.0	295.2	4.8
2/4	505	0.020	22.0	295.2	7.0
2/5	619	0.042	22.0	295.2	6.1
2/6	697	0.031	22.0	295.2	7.4
					[a
Average			22.0	295.2	6.6

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): 3 mm
Absolute pressure in stack (hPa): 1026.29 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

22-May-19

Client: Liberty Recycling Hexham

AECOM's Project No:

60493017

Stack Description No.: Sample Nozzle No.:

Shredder Stack

Sample Nozzle Area (An):

2.44

Sampling Port No.:

fine6 1 to 2

Thimble No:

N23 0

Page No:

1 of 1

Blank thimble No:

Leak Check (Post Sampling) 140.7762 Meter finish:

140.7762

x 10⁻⁵m²

Meter start: Time start:

139.6048 Meter finish: 9:55 Time finish:

139.6048 Meter start: 9:56 Time start:

11:48 Time finish:

11:49

Flowrate

Attained

(Y/N) Yes Yes Yes Yes Yes Yes Yes Yes Yes

Yes

Yes

Yes

Therefore, leakage rate = no leak

Leak Check (Pre-Sampling)

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min, is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Repeat:

Comments:

Comments:

Sampling Record Table

Meter correction factor (GMf):

0:07:45

Barometric Pressure:

1028 hPa (start);

L/min

1028 hPa (finish)

23.0

Meter start:

2/6

139.6062

727

Time start:

31.0

10:22

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)
1/1	0:07:30	33	13.8	28.0	21.0	
1/2	0:07:00	111	13.8	28.0	23.0	
1/3	0:08:30	225	13.8	28.0	23.0	
1/4	0:07:45	535	13.8	26.0	24.0	
1/5	0:07:30	649	13.8	24.0	24.0	
1/6	0:07:45	727	13.8	25.0	24.0	
2/1	0:05:30	33	13.8	30.0	23.0	
2/2	0:06:00	111	13.8	30.0	23.0	
2/3	0:05:00	225	13.8	30.0	23.0	
2/4	0:07:30	535	13.8	30.0	23.0	
2/5	0:06:30	649	13.8	30.0	23.0	

13.8

0.9984

23.1 28.3 no result Averages 140.7740 11:46 Meter Finish: Time Finish:

Total Condensate collected:

-10 ml

Silica gel No(s) used:

118

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date:

22-May-19

Client:

Liberty Recycling Hexham

AECOM's Project No:

60493017

Stack Description No.: Sample Nozzle No.:

Shredder Stack s3

Sample Nozzle Area (An):

2.85

x 10⁻⁵m²

Sampling Port No.:

Thimble No:

T30

Page No:

1 to 2 1 of 1

Blank thimble No:

Leak Check (Pre-Sampling)

Meter start:

5540.0274 Meter finish: 9:56 Time finish:

5540.0274 Meter start:

L/min

9:57 Time start:

Leak Check (Post Sampling)
Meter start: 5541.0492 Meter finish: 11:49 Time finish:

5541.0492 11:50

Therefore, leakage rate = no leak

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Time start:

Repeat:

Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1028 hPa (start);

Time start:

1028 hPa (finish)

10:22

Meter start: Meter correction factor (GMf):

5540.0656

1.0020

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:00	33	12.2	24.0	25.0		Yes
1/2	0:14:00	111	11.5	27.0	25.0		Yes
1/3	0:21:00	225	13.8	28.0	25.0		Yes
1/4	0:28:00	535	12.9	28.0	25.0		Yes
1/5	0:35:00	649	12.2	29.0	24.0		Yes
1/6	0:42:00	727	12.7	29.0	24.0		Yes
2/1	0:49:00	33	9.1	31.0	24.0		Yes
2/2	0:56:00	111	9.8	31.0	24.0		Yes
2/3	1:03:00	225	8.4	31.0	24.0		Yes
2/4	1:10:00	535	12.2	31.0	24.0		Yes
2/5	1:17:00	649	10.6	31.0	24.0		Yes
2/6	1:24:00	727	12.9	31.0	24.0		Yes
Averages				29.3	24.3	no result	
Averages Meter Finish		5541.0470		Time Finish:	24.0	11:46	

Total Condensate collected:

-10 ml

Time Finish: Silica gel No(s) used:

110

Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

22-May-19 Date:

Liberty Recycling Hexham Client:

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

3.72 x 10⁻⁵m² Sample Nozzle Area (An): Sample Nozzle No.: XI

1 to 2 Thimble No: 0 Sampling Port No.:

Page No: 1 of 1 Blank thimble No:

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)
Meter start: 22181,2742 Meter finish: 22181.2742 22179.9556 Meter finish: 22179.9556 Meter start: Meter start: 11:50 Time finish: 9:57 Time finish: 9:58 Time start: 11:51 Time start:

L/min Therefore, leakage rate = no leak Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

1028 hPa (start); 1028 hPa (finish) Barometric Pressure:

22179.9576 Time start: 10:22 Meter start:

1.0137 Meter correction factor (GMf):

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:00	33	16.1	24.0	20.0		Yes
1/2	0:14:00	111	15.2	28.0	21.0		Yes
1/3	0:21:00	225	18.2	29.0	22.0		Yes
1/4	0:28:00	535	17.0	29.0	23.0		Yes
1/5	0:35:00	649	16.1	33.0	24.0		Yes
1/6	0:42:00	727	16.8	33.0	25.0	1	Yes
2/1	0:49:00	33	12.0	35.0	26.0		Yes
2/2	0:56:00	111	12.9	35.0	27.0		Yes
2/3	1:03:00	225	11.0	35.0	27.0		Yes
2/4	1:10:00	535	16.1	35.0	27.0		Yes
2/5	1:17:00	649	14.0	35.0	27.0		Yes
2/6	1:24:00	727	17.0	34.0	26.0		Yes
- 4							
Averages				32.1	24.6	no result	

Total Condensate collected:

0 ml

Silica gel No(s) used:

42

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 22-May-19

Client: Liberty Recycling Hexham
AECOM's Project No: 60493017
Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time:	11:52	Barometric Pr			hPa		
Page No.: 1 of 1		Pitot Correction		0.84	4.1.6		
Sampling Port No: 1 to 2		Stack Gas De	ensity:	1.29	kg/m ³		
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)		
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp.	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s		
1/1	3	0.041	24.0	297.2	7.0		
1/2	81	0.038	24.0	297.2	6.7		
1/3	195	0.049	24.0	297.2	7.6		
1/4	505	0.043	24.0	297.2	7.1		
1/5	619	0.039	24.0	297.2	6.8		
1/6	697	0.043	24.0	297.2	7.1		
			010	207.0			
2/1	3	0.029	24.0	297.2	5.9		
2/2	81	0.031	24.0	297.2	6.1		
2/3	195	0.020	24.0	297.2	4.8		
2/4	505	0.037	24.0	297.2	6.6		
2/5	619	0.029	24.0	297.2	5.9		
2/6	697	0.043	24.0	297.2	7.1		
Average			24.0	297.2	6.6		

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -3 mm
Absolute pressure in stack (hPa): 1025.71 hPa

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

22-May-19

Liberty Recycling Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.1659 m3

Average barometric

Average gas meter temp. (T_{M.2}):

25.7 °C

pressure (PBARO)

1028 hPa

298.9 K

Average pressure at meter (P_{M,2})

1028.00 hPa

Sample gas volume (MV4); (0°C, dry

gas, 1 atm pressure):

1.0812 m3

(B) PM10 concentration at standard conditions

Blank thimble No .:

Blank weight: PM10 Weight

g 0.0088 a

Thimble No. used: Final PM10 Weight (Mp1):

PM10 Concentration (C1):

N23

0.00880 g

0.0081 g/m3 (0°C, dry gas, 1atm pressure)

and C2 =

 $=M_{p1}/MV_4=$

8.1 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis

12 %

Average CO2%:

0.0 %

Therefore, C.:

= C_a x 12/CO₂% =

0.0081 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and Co1 =

8.1 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

7 %

Average O₂%:

20.9 %

Therefore, Cb:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

1.1 g/m3 (0°C, dry gas, 1atm pressure,

02)

and Con =

1100 mg/m3 (0°C, dry gas, 1atm pressure,

-10 mL (=grams)

(recorded on

Laboratory Form

02)

(C) Moisture content

Silica Gel Number:

118

V. =

17.1 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

-0.0133

0.0228

Volume of Water Vapour Condensed (Vwsg(std)) = Therefore, Bws =

108)

(Vwc(std)+Vwsa(std)) $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

B_{ws} =

0.20 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.29 kg/m3 (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.29 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

=

1.205 kg/m3 (stack conditions, wet)

- (E) Gas Velocities
- (i) Average of pre-sampling velocities:

6.61 m/s

(ii) Average of post-sampling velocities:

6.56 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 6.58 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Qstd =

Vs x A =

2.98 m³/s (stack conditions)

Qstd = Qstack x

Ps x

(Tstd) x (100 - B_w)

100

(Pstd)

(Ts)

2.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

Rm =
$$C_{1a} \times Qstd = 0.023$$
 g/s (0°C, dry gas, 1 atm pressure)
= 23 mg/s (0°C, dry gas, 1 atm pressure)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

22-May-19

Client:

Liberty Recycling Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.9834 m³

Average barometric

Average gas meter temp. (T_{M2}):

26.8 °C 300.0 K

pressure (PBARO)

Average pressure at meter

(P_{M.2})

1028.00 hPa

1028 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

0.9086 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .:

Blank weight:

g

Thimble No. used: Final Total Particulate Weight (Mp1):

0.01970 g

Total Particulate Weight

0.0197 g

Total Particulate Concentration (C1):

 $=M_{01}/MV_4=$

0.022 g/m3 (0°C, dry gas,

1atm pressure)

and C2 =

22 mg/m3 (0°C, dry gas, 1atm pressure)

12 %

Average CO2%:

CO₂ Basis

0.0 %

Therefore, C.:

= C_a x 12/CO₂% =

0.022 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO2)

;and Cc1 =

22 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

7 % O₂ Basis

Average O2%:

20.9 %

Therefore, Ch:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

3.1 g/m3 (0°C, dry gas, 1atm pressure,

;and Cb1 =

3100 mg/m3 (0°C, dry gas, 1atm pressure,

-10 mL (=grams)

108)

(recorded on

Laboratory Form

7% 02)

(C) Moisture content

Silica Gel Number:

16.3 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) = Volume of Water Vapour Condensed (Vwsq(std)) =

110

-0.0133

0.0218

Therefore, Bws =

V. =

(Vwc(std)+Vwsg(std)) (Vwc(std)+Vwsg(std)+Vm(std))

Bws =

0.20 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling: 1.29 kg/m3 (from Laboratory Form 107)
- (ii) Re-calculated gas density based on moisture content in (c):

1.29 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1.205 kg/m3 (stack conditions, wet)

- (E) Gas Velocities
- (i) Average of pre-sampling velocities: 6.61 m/s
- (ii) Average of post-sampling velocities: 6.56 m/s
- (iii) Average of while-sampling velocities: N/A m/s
- (iv) Overall average of pre-sampling and postsampling velocities (Vs):

6.58 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

2.98 m³/s (stack conditions)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

Qstack =

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Vs x A = Qstd = Ps x (Tstd) x (100 - B_w) Qstack x

(Pstd) (Ts)

2.8 m3/s (0°C, dry gas, 1 atm pressure) Ostd =

(G) Mass Emission Rate

C1a x Qstd = g/s (0°C, dry gas, 1 atm pressure Rm = 0.061 mg/s (0°C, dry gas, 1 atm pressure 61

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 22-May-19 Client: Liberty Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

1.3332 m3 Average barometric Metered volume (MV₃):

pressure (PBARO) 28.3 °C Average gas meter temp. (T_{M.2}): 1028 hPa

> 301.5 K Average pressure at meter

> > (P_{M,2}) 1028.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure): 1.2256 m3

(B) Metals concentration at standard conditions

Blank weight: Blank thimble No .: g 0 000218 g Thimble No. used: Metals Weight

0.00022 g Final Metals Weight (Mp1):

0.00018 g/m3 (0°C, dry gas, Metals Concentration (C1): $=M_{p,1}/MV_4=$

1atm pressure)

and Co = 0.18 mg/m3 (0°C, dry gas, 1atm pressure)

CO2 Basis 12 %

Average CO2%: 0.0 %

0.00018 g/m3 (0°C, dry gas, 1atm = C₂ x 12/CO₂% = Therefore, Cc:

pressure, 12% CO₂)

0.18 mg/m3 (0°C, dry gas, 1atm ;and Cc1 =

pressure, 12% CO₂)

O₂ Basis 7 %

Average O2%: 20.9 %

=Ca x (21 - O_{2ref}%)/(21 - O_{2mea}%) 0.025 g/m3 (0°C, dry gas, 1atm pressure, Therefore, Ch.

02)

;and Cbt = 25 mg/m3 (0°C, dry gas, 1atm pressure,

> 7% 02)

(C) Moisture content

Silica Gel Number: 42

n mL (=grams) V. = 8.2 g (from laboratory report) (recorded on Volume of Water Vapour Condensed (Vwc(std)) = 0.0000 Laboratory Form

Volume of Water Vapour Condensed (Vwsg(std)) = 0.0109 108)

Therefore, Bws = (Vwc(std)+Vwsq(std))

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

Bws = 0.20 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.29 kg/m3 (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.29 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1,205 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

6.61 m/s

(ii) Average of post-sampling velocities:

6.56 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

6.58 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

2.98 m3/s (stack conditions)

Qstd =

Qstack x

Ps x

(Tstd) x $(100 - B_w)$

(Pstd)

(Ts)

100

Qstd =

2.8 m3/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

0.0005

g/s (0°C, dry gas, 1 atm pressure

0.5

mg/s (0°C, dry gas, 1 atm pressure

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK LIBERTY RECYCLING HEXHAM

22-May-19
FINE PARTICULATE (PM10)
TOTAL PARTICULATE
HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	23.0 °C	296.2 K
Stack pressure (average)	1026 hPa	
Stack gas velocity (average, stack conditions)	6.6 m/s	
Stack gas flowrate (stack conditions)	3 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.8 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	10:22	11:46
Fine Particulate (PM10) Mass	8.8 mg	
Gas Volume Sampled	1.08 m ³	
Fine Particulate (PM10) Emission*1	8.1 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	23 mg/s	
Regulatory Limit	N/A mg/m ³	
Total Particulate Testing		
Test Period		11:46
Total Particulate Mass	19.7 mg	
Gas Volume Sampled	0.909 m ³	
Total Particulate Emission*1	22 mg/m ³	
Total Particulate Mass Emission Rate*2	61 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	1,000	11:46
Hazardous Substances (Metals) Mass	0.218 mg	
Gas Volume Sampled	1.23 m ³	
Hazardous Substances (Metals) Emission*1	0.18 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.5 mg/s	
Regulatory Limit	N/A mg/m ³	
Moisture Content (%)	0.2	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes "1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin: AECOM - Newcastle Report: 18854-0-P Page 1 of 1

Project: 60493017

Description : Stack Emission Samples **Date :** 28-May-19

Received: 23-May-19

Report To: Cye Buckland **Copy to:** FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble
IDVolume (mL)Total
Particulate Matter
(g)N23Thimble-0.0088T30Thimble-0.0197

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By: Tanplal.

Jason Campbell - Manager

Determined in Accordance With:
Particulate matter - total in stack gases by
gravimetric using in-house M300;
Acetone/Water Rinse using AS4323.2
Refer Form F422 - Measurement Uncertainty

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin: AECOM - Newcastle Report: 18854-0-M Page 1 of 1

Project: 60493017

Description : Stack Emission Samples **Date :** 28-May-19

Received: 23-May-19

Report To: Cye Buckland Copy to: FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
110	16.3	
118	17.1	
42	8.2	

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing Reported By: Campbell

Jason Campbell - Manager

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty

ANALYTICAL REPORT

Address

CLIENT DETAILS -LABORATORY DETAILS

Contact Cye Buckland AECOM Australia Pty Ltd Client

Address 17 Warabrook Boulevard

Warabrook

SYDNEY NSW 2304

Manager Laboratory

SGS Melbourne EH&S

Adam Atkinson

10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone 02 8295 3600 Telephone +61395743200 02 8934 0001 Facsimile +61395743399 Facsimile

cye.buckland@aecom.com Email Au.SampleReceipt.Melbourne@sgs.com

Project 60493017/4.1 SGS Reference ME310641 R0 60493017/4.1 Date Received 24 May 2019 Order Number 05 Jun 2019 Samples Date Reported

COMMENTS

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

Weiming Dai Inorganic Supervisor

MING

Ryan Zhang Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Bldg 10, 585 Blackburn Rd

Notting Hill VIC 3168

t +61 3 9574 3200 Australia

f+61 3 9574 3399

www.sgs.com.au

Sample Volume*

ANALYTICAL REPORT

ME310641 R0

	Si	nple Numbe ample Matri Sample Dat ample Nam	x Filter e 22 May 2019	ME310641.002 Filter 22 May 2019 Metal 12	ME310641.003 Impinger 22 May 2019 Metals 3	ME310641.004 Impinger 22 May 2019 Metals 4
Parameter	Units	LOR				
	Method: EPA2		Tested: 29/5/2019			
Sb	µg total	0.05	0.21	0.07	-	-
As	μg total	0.05	0.69	0.66	-	-
Be	µg total	0.05	0.06	0.07	-	-
Cd	µg total	0.05	2.1	<0.05	-	-
Cr	µg total	0.05	2.5	2.4	-	-
Со	µg total	0.05	0.09	<0.05	-	-
Cu	µg total	0.05	0.61	<0.05	-	-
Pb	µg total	0.05	6.0	1.2	-	-
Mg	µg total	0.05	340	330	-	-
Mn	µg total	0.05	3.7	1.6	-	-
Hg	µg total	0.05	<0.05	<0.05	-	-
Ni	μg total	0.05	0.87	0.24	-	-
Se	μg total	0.05	0.17	<0.05	-	-
П	μg total	0.05	<0.05	<0.05	-	-
Sn	µg total	0.05	0.78	0.11	-	-
V	μg total	0.25	0.83	1.0	-	-
Zn	μg total	0.05	7800	7900	-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EPA	29_METIN	IP Tested: 4/6/2	019		
Sb	µg total	0.1	-	-	1.3	1.3
As	µg total	0.1	-	-	0.2	0.2
Be	µg total	0.1	-	-	<0.1	<0.1
Cd	μg total	0.1	-	-	0.7	0.9
Cr	μg total	0.1	-	-	1.1	4.5
Со	μg total	0.1	-	-	0.4	6.4
Cu	µg total	0.1	-	-	9.8	3.1
Pb	µg total	0.1	-	-	110	2.5
Mg	µg total	0.1	-	-	55	5.6
Mn	μg total	0.1	-	-	13	24
Hg	μg total	0.1	-	-	<0.1	<0.1
Ni	µg total	0.1	-	-	2.7	39
Se	µg total	0.1	-	-	0.3	<0.1
ТІ	µg total	0.1	-	-	<0.1	<0.1
Sn	µg total	0.1	-	-	0.8	0.4
V	µg total	0.1	-	-	0.6	0.9
7-		0.4			F00	

05-June-2019 Page 2 of 6

Sample Volume*

ANALYTICAL REPORT

ME310641 R0

	Si	nple Numbe ample Matri Sample Dat ample Nam	ix Impinger te 22 May 2019	ME310641.006 Impinger 22 May 2019 Metals 9	ME310641.007 Impinger 22 May 2019 Metals 5A	ME310641.008 Impinger 22 May 2019 Metals 5C
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA2	9_FILT	Tested: 30/5/2019			
Sb	µg total	0.05	-	-	-	-
As	μg total	0.05	-	-	-	-
Be	μg total	0.05	-	-	-	-
Cd	μg total	0.05	-	-	-	-
Cr	μg total	0.05	-	-	-	-
Со	μg total	0.05	-	-	-	-
Cu	µg total	0.05	-	-	-	-
Pb	µg total	0.05	-	-	-	-
Mg	µg total	0.05	-	-	-	-
Mn	µg total	0.05	-	-	-	-
Hg	µg total	0.05	-	-	-	-
Ni	µg total	0.05	-	-	-	-
Se	µg total	0.05	-	-	-	-
П	µg total	0.05	-	_	_	_
Sn	µg total	0.05	-	-	-	-
V	µg total	0.25	-	-	-	
Zn	µg total	0.05	_	_	_	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EPA	_				
Sb	µg total	0.1	0.4	0.6	-	-
As	µg total	0.1	<0.1	0.2	-	-
Be	µg total	0.1	<0.1	<0.1	-	-
Cd	µg total	0.1	<0.1	<0.1	-	-
Cr	µg total	0.1	<0.1	0.4	-	-
Со	µg total	0.1	<0.1	<0.1	-	-
Cu	µg total	0.1	<0.1	<0.1	-	-
Pb	μg total	0.1	<0.1	<0.1	-	-
Mg	µg total	0.1	<0.1	1.2	-	-
Mn	µg total	0.1	0.2	1.5	-	-
Hg	µg total	0.1	<0.1	<0.1	<0.1	<0.1
Ni	µg total	0.1	<0.1	0.2	-	-
Se	μg total	0.1	0.2	0.5	-	-
П	μg total	0.1	<0.1	<0.1	-	-
Sn	μg total	0.1	<0.1	0.2	-	-
V	µg total	0.1	0.7	1.3	-	-
Zn	µg total	0.1	0.2	0.7	-	-

05-June-2019 Page 3 of 6

Sample Volume*

ANALYTICAL REPORT

ME310641 R0

	Si	nple Numbe ample Matr Sample Dat ample Nam	ix Impinger te 22 May 2019	ME310641.010 Impinger 22 May 2019 Metals 11	ME310641.011 KMnO4 22 May 2019 Metals 5B	ME310641.012 KMnO4 22 May 2019 Metals 10
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA2	9_FILT	Tested: 30/5/2019			
Sb	μg total	0.05	-	-	-	-
As	μg total	0.05	-	-	-	-
Ве	μg total	0.05	-	-	-	-
Cd	µg total	0.05	-	-	-	-
Cr	µg total	0.05	-	-	-	-
Со	µg total	0.05	-	-	-	-
Cu	µg total	0.05	-	-	-	-
Pb	µg total	0.05	-	-	-	-
Mg	µg total	0.05	-	-	-	-
Mn	µg total	0.05	-	-	-	-
Hg	µg total	0.05	-	-	-	-
Ni	µg total	0.05	-	-	-	-
Se	µg total	0.05	-	-	-	-
П	µg total	0.05	-	-	-	-
Sn	µg total	0.05	-	-	-	-
V	µg total	0.25	-	-	-	-
Zn	µg total	0.05	-	-	-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EPA	29_METIN	/IP Tested: 29/5/2	2019		
Sb	µg total	0.1	-	-	-	-
As	μg total	0.1	-	-	-	-
Be	μg total	0.1	-	-	-	-
Cd	μg total	0.1	-	-	-	-
Cr	μg total	0.1	-	-	-	-
Со	μg total	0.1	-	-	-	-
Cu	μg total	0.1	-	-	-	-
Pb	μg total	0.1	-	-	-	-
Mg	μg total	0.1	-	-	-	-
Mn	μg total	0.1	-	-	-	-
Hg	μg total	0.1	<0.1	<0.1	0.1	<0.1
Ni	μg total	0.1	-	-	-	-
Se	µg total	0.1	-	-	-	-
П	µg total	0.1	-	-	-	-
Sn	µg total	0.1	-	-	-	-
V	µg total	0.1	-	-	-	-
Zn	µg total	0.1	-	-	-	-

05-June-2019 Page 4 of 6

250

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB026810	µg total	0.05	<0.05	105%
As	LB026810	μg total	0.05	<0.05	101%
Ве	LB026810	µg total	0.05	<0.05	99%
Cd	LB026810	μg total	0.05	<0.05	100%
Cr	LB026810	µg total	0.05	<0.05	104%
Со	LB026810	μg total	0.05	<0.05	103%
Cu	LB026810	μg total	0.05	<0.05	110%
Pb	LB026810	μg total	0.05	<0.05	105%
Mg	LB026810	μg total	0.05	<0.05	110%
Mn	LB026810	μg total	0.05	<0.05	104%
Hg	LB026810	μg total	0.05	<0.05	98%
Ni	LB026810	μg total	0.05	<0.05	104%
Se	LB026810	μg total	0.05	<0.05	99%
П	LB026810	µg total	0.05	<0.05	103%
Sn	LB026810	µg total	0.05	<0.05	102%
V	LB026810	µg total	0.25	<0.25	105%
Zn	LB026810	μg total	0.05	<0.05	104%

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC Reference	Units	LOR	MB	LCS
Sb	LB026812	µg total	0.1	<0.1	%Recovery
			-	-	
As	LB026812	µg total	0.1	<0.1	98%
Be	LB026812	µg total	0.1	<0.1	93%
Cd	LB026812	µg total	0.1	<0.1	97%
Cr	LB026812	μg total	0.1	<0.1	107%
Со	LB026812	μg total	0.1	<0.1	113%
Cu	LB026812	µg total	0.1	<0.1	110%
Pb	LB026812	μg total	0.1	<0.1	106%
Mg	LB026812	μg total	0.1	<0.1	107%
Mn	LB026812	μg total	0.1	<0.1	105%
Hg	LB026812	μg total	0.1	<0.1	
Ni	LB026812	μg total	0.1	<0.1	108%
Se	LB026812	µg total	0.1	<0.1	96%
П	LB026812	μg total	0.1	<0.1	104%
Sn	LB026812	μg total	0.1	<0.1	101%
V	LB026812	μg total	0.1	<0.1	107%
Zn	LB026812	μg total	0.1	<0.1	105%
Sample Volume*	LB026812	mL	-	1.0	NA

05-June-2019 Page 5 of 6

METHOD SUMMARY

METHOD -

METHODOLOGY SUMMARY

EPA 29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A.

. Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM -MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

FPA29

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29, USEPA 3015A and USEPA 6020A.

Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES _

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the

performance of this service.

Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte

NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au.pv.sgsvr/en-gb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

05-June-2019 Page 6 of 6

End of Report