

1st Quarter Emissions Testing Report 2019

Liberty Recycling Hexham

1st Quarter Emissions Testing Report 2019

Liberty Recycling Hexham

Client: Liberty Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

03-May-2019

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

1st Quarter Emissions Testing Report 2019 Document

Ref 60493017

09-April-2019 Date

Prepared by Colin Clarke

Reviewed by Paul Wenta

allet **AECOM Approved Signatory** Chad Whitburn

Revision History

Rev	Revision Date	Details	Authorised		
Rev	Revision Date	Details	Name/Position	Signature	
0	3-May-2019	Report for Issue	Chad Whitburn Associate Director - Compliance Services	alle	
			·		

Table of Contents

1.0	Introduct	tion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo	ology	3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Sampling	g Location	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Append	dix A		
	Field Sh	eets (19 pages)	Α
Append	dix B		
	Laborato	ory Results (8 pages)	В
List of	Tables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	<u> </u>	AECOM NATA Endorsed Methods	3
Table 3	3	Sampling Location Summary	4
Table 4	ļ	Shredder Baghouse Emission Results Summary, 14 March 2019	5
Table 5	5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	
		Results, 14 March 2019	6
Table 6	6	Hazardous Substances (Metals) Elemental Analysis Results, 14 March 2019	7

Hazardous Substances (Metals) Elemental Analysis Results, 14 March 2019

1

1.0 Introduction

AECOM was appointed by Liberty Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 14 March 2019 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 18314-0-M & 18314-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME309936 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2	USEPA (2000) Method 5	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201A	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 14 March 2019.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 14 March 2019

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	9.2	100
Fine Particulate (PM ₁₀) (mg/m³)	2.7	N/A
Lead (mg/m³)	0.0052	5
Mercury (mg/m³)	0.00021	1
Total Hazardous Substances (Metals) (mg/m³)	0.023	N/A

Results from testing conducted on EPL Point 1 on 14 March 2019 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 14 March 2019

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	33.5	°C	306.7 K
Stack pressure (average)	1014	hPa	
Stack gas velocity (average, stack conditions)	7.3	m/s	
Stack gas flowrate (stack conditions)	3.3	m³/s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.9	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	12:55	-	14:25
Fine Particulate (PM ₁₀) Mass	2.8	mg	
Gas Volume Sampled	1.03	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	2.7	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	7.8	mg/s	
Regulatory Limit	N/A		
Total Particulate Testing			
Test Period	12:55	-	14:25
Total Particulate Mass	9.4	mg	
Gas Volume Sampled	1.02	m^3	
Total Particulate Emission*1	9.2	mg/m³	
Total Particulate Mass Emission Rate*2	27	mg/s	
Regulatory Limit	100	mg/m³	
Hazardous Substances (Metals) Testing			
Test Period	12:55	-	14:25
Hazardous Substances (Metals) Mass	0.022	mg	
Gas Volume Sampled	0.956	m^3	
Hazardous Substances (Metals) Emission*1	0.023	mg/m³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.067	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	1.9		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

 $^{^*}$ 2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Hazardous Substances (Metals) Elemental Analysis Results, 14 March 2019 Table 6

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00015	0.00016	0.00015	0.00016			0.0003	0.00031	0.0009
Arsenic	<0.00046	<0.00048	<0.0001	<0.0001			<0.0001	<0.0001	<0.00029
Beryllium	<0.00005	<0.000052	<0.0001	<0.0001			<0.0001	<0.0001	<0.00029
Cadmium	0.00037	0.00039	<0.0002	<0.00021			0.0004	0.00042	0.0012
Chromium	0.0011	0.0012	0.00049	0.00051			0.002	0.0021	0.0061
Cobalt	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	<0.0001	<0.00029
Copper	0.0024	0.0025	0.003	0.0031			0.005	0.0052	0.015
Lead	0.0033	0.0035	0.0013	0.0014			0.005	0.0052	0.015
Magnesium	<0.29	<0.3	0.029	0.03			0.03	0.031	0.09
Manganese	0.0019	0.002	0.0011	0.0012			0.003	0.0031	0.009
Mercury	0.00005	0.000052	0.000048	0.00005	0.00015	0.00016	0.0002	0.00021	0.00061
Nickel	0.00084	0.00088	0.0005	0.00052			0.001	0.001	0.0029
Selenium	0.00005	0.000052	<0.0005	<0.00052			0.00005	0.000052	0.00015
Thallium	<0.0001	<0.0001	<0.0001	<0.0001			<0.0001	<0.0001	<0.00029
Tin	0.008	0.0084	0.0038	0.004			0.01	0.01	0.029
Vanadium	<0.00299	<0.0031	<0.0039	<0.0041			<0.0001	<0.0001	<0.00029
Zinc	<6.6	<6.9	0.023	0.024			0.02	0.021	0.061
Total Hazardous Metals*	0.0078	0.0082	0.0036	0.0038	0.00015	0.00016	0.022	0.023	0.066
Total Metals	0.018	0.019	0.062	0.065			0.077	0.081	0.23

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

This page has been left blank intentionally.

Appendix A

Field Sheets (19 pages)

Appendix A Field Sheets (19 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number:

60493017

Emission Source:

Shredder Stack

Date Sampled:

14-Mar-19

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Sharn Crosdale

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:

14-Mar-19

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Test 1:

Stack/Duct Description: Shredder Stack Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

		Measurement/Obse	rvations		
Stack Inte	ernal Dimensions:				
Diameter OR	76 Length ridth (mm)	0 mm Width	Cross Sectional Area	a: 0.45 m	2
	nt Diameter N/A	mm	sampling points=	12	
Lquivalei	it Diameter IVA	111141	Sampling points-	12	
Distance	from sampling plane to		Total No. of sampling	points =	12
nearest d	isturbances:			PM2.5/10=	12
			No. of sampling trave	erses/ports	
Jpstream	n (m) = 5		sampled =		2
No. Diam	eters = 6.6			PM2.5/10=	2
Type of U	pstream Disturbance:	Fan Entry	No. of sampling poin		
	am (m) = 2	V	traverse/port =		6
No. Diame			The state of the s	PM2.5/10=	6
Type of D	own Stream Disturbance:	Stack Exit		100.001.012	
Position o	of each sampling point, for	each traverse:	Exclusion of any sam numbers - comments		
	Α	В	PM10/2.5 A	PM2.5/1	
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot d	istance
1	33	3	33	3	
2	111	81	111	81	
3	225	195	225	195	
4	535	505	535	505	
5	649	619	649	619	
6	727	697	727	697	7
7					
8					
9					
10		-	Check of total points		
11			minimum, (yes/no) -	comments:	
12					
13					
14.4					
14			1		
15			1		
15 16			8		
15 16 17					
15 16 17 18					
15 16 17 18 19			General Comments:		
15 16 17 18			General Comments: Checked: 34		

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

14-Mar-19

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

Sampling time start:	12:43	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:43	0	20.9	0.0
2	12:44	0	20.9	0.0
3	12:45	0	20.9	0.0
4	12:46	0	20.9	0.0
5	12:47	0	20.9	0.0
6	12:48	0	20.9	0.0
7	12:49	0	20.9	0.0
8	12:50	0	20.9	0.0
	Averages:	0.0 ppm		

Moisture content (M3):

0.98 2.40 %

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.2 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.4 %,(wet)	
H ₂ O:	2.40 %(=M2)			
Therefore,	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 14-Mar-19 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	14:12	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	14:12	0	20.9	0.0
2	14:13	0	20.9	0.0
3	14:14	0	20.9	0.0
4	14:15	0	20.9	0.0
5	14:16	0	20.9	0.0
6	14:17	0	20.9	0.0
7	14:18	0	20.9	0.0
8	14:19	0	20.9	0.0
	Averages:	0.0 ppm		

Moisture content (M3): Moisture percentage (M2): 0.98 1.89 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.6 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.5 %,(wet)	
H ₂ O:	1.89 %(=M2)			
Therefore	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 14-Mar-19 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time:	12:53	Barometric Pr		1014	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	0.038	33.0	306.2	6.9
1/2	81	0.038	33.0	306.2	6.9
1/3	195	0.041	33.0	306.2	7.1
1/4	505	0.051	33.0	306.2	7.9
1/5	619	0.046	33.0	306.2	7.6
1/6	697	0.047	33.0	306.2	7.6
2/1	3	0.045	33.0	306.2	7.5
2/2	81	0.044	33.0	306.2	7.4
2/3	195	0.043	33.0	306.2	7.3
2/4	505	0.050	33.0	306.2	7.9
2/5	619	0.029	33.0	306.2	6.0
2/6	697	0.047	33.0	306.2	7.6
Average			33.0	306.2	7.3

Static Pressure (Dwyer) (Pa): kPa Static Pressure (U-tube, if required): -5.1 mm Absolute pressure in stack (hPa): 1013.50 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

14-Mar-19

Client: OneSteel Hexham

60493017

AECOM's Project No: Stack Description No.:

Shredder Stack

Sample Nozzle No .:

fine10

Sample Nozzle Area (An):

Sampling Port No.:

Therefore, leakage rate = no leak

1 to 2

Thimble No:

5.82 M29 0

Page No:

1 of 1

Blank thimble No:

x 10⁻⁵m²

Meter start:

Leak Check (Pre-Sampling) 5500.3022 Meter finish:

5500.3022 Meter start:

Leak Check (Post Sampling)
Meter start: 5501.4672 Meter finish: 14:29 Time finish:

5501.4672 14:30

Time start:

12:46 Time finish:

12:47 Time start:

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Therefore, leakage rate = no leak

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

L/min

1014 hPa (finish)

Meter start:

5500.3038

Time start:

12:55

Meter correction factor (GMf):

0.9900

	Stopwatch	December 1	A			1000	
	Time at	Distance	Isokinetic	42. 2. 3. 3.	1000	Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet		Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:00	33	12.9	30.6	27.5	У	Yes
1/2	0:07:00	111	12.9	31.0	28.0	У	Yes
1/3	0:07:15	225	12.9	32.0	28.0	y	Yes
1/4	0:08:15	535	12.9	33.0	28.0	У	Yes
1/5	0:07:45	649	12.9	33.0	28.0	У	Yes
1/6	0:07:45	727	12.9	33.0	28.0	У	Yes
2/1	0:07:45	33	12.9	33.0	29.0	у	Yes
2/2	0:07:30	111	12.9	34.0	29.0	У	Yes
2/3	0:07:30	225	12.9	35.0	29.0	У	Yes
2/4	0:08:00	535	12.9	35.0	30.0	y	Yes
2/5	0:06:15	649	12.9	35.0	30.0	У	Yes
2/6	0:08:00	727	12.9	35.0	30.0	ý	Yes
		- 4					
Averages				33.3	28.7	no result	
Meter Finish:		5501.4650		Time Finish:	20.7	14:25	

Total Condensate collected:

0 ml

Silica gel No(s) used:

G024

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date:

14-Mar-19

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack Description No.: Sample Nozzle No.:

Shredder Stack

s10

Sample Nozzle Area (An):

2.98

x 10⁻⁵m²

Sampling Port No.:

1 to 2

Thimble No:

N23

Page No:

1 of 1

Blank thimble No:

Leak Check (Post Sampling)

549.9264 Meter finish:

549.9264

Meter start: Time start:

549.7956 Meter finish: 12:48 Time finish:

549.7956 Meter start: 12:49 Time start:

14:31 Time finish:

14:32

Leak Check (Pre-Sampling)

Therefore, leakage rate = no leak L/min Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Repeat:

Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start); 549.7978

1014 hPa (finish) Time start:

12:55

Meter start: Meter correction factor (GMf):

1.0000

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:30	33	11.8	29.0	27.0	v v	Yes
1/2	0:15:00	111	11.8	30.0	27.0	y	Yes
1/3	0:22:30	225	12.2	30.0	28.0	y	Yes
1/4	0:30:00	535	13.5	31.0	28.0	v	Yes
1/5	0:37:30	649	13.0	31.0	28.0	y	Yes
1/6	0:45:00	727	13.0	31.0	28.0	y	Yes
2/1	0:52:30	33	12.8	31.0	28.0	У	Yes
2/2	1:00:00	111	12.7	31.0	28.0	у	Yes
2/3	1:07:30	225	12.5	32.0	29.0	y	Yes
2/4	1:15:00	535	13.5	33.0	29.0	у	Yes
2/5	1:22:30	649	10.3	32.0	29.0	у	Yes
2/6	1:30:00	727	13.0	32.0	29.0	y	Yes
Averages Meter Finish:		550.9250		31.1 Time Finish:	28.2	no result	

Total Condensate collected:

3 ml

Silica gel No(s) used:

026

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date:

14-Mar-19

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack Description No.:

Shredder Stack

Sample Nozzle No.:

g61

Sample Nozzle Area (An):

2.73

x 10⁻⁵m²

Sampling Port No.: Page No:

1 to 2 1 of 1 Thimble No:

Blank thimble No:

Leak Check (Pre-Sampling) 656.6854 Meter finish: 12:50 Time finish:

656.6854 Meter start: 12:51 Time start:

657.7392 Meter finish: 14:33 Time finish:

657.7392 14:34

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

Leak Check (Post Sampling)

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Meter start:

Time start:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start:

656.6882

Time start:

12:55

Meter correction factor (GMf):

1.0057

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:30	33	10.9	28.0	27.0	v	Yes
1/2	0:15:00	111	10.9	29.0	27.0	y	Yes
1/3	0:22:30	225	11.2	29.0	28.0	v	Yes
1/4	0:30:00	535	12.5	30.0	28.0	v	Yes
1/5	0:37:30	649	12.0	30.0	28.0	y	Yes
1/6	0:45:00	727	12.0	30.0	28.0	y	Yes
2/1	0:52:30	33	11.8	30.0	28.0	у	Yes
2/2	1:00:00	111	11.7	30.0	28.0	У	Yes
2/3	1:07:30	225	11.5	30.0	29.0	У	Yes
2/4	1:15:00	535	12.5	31.0	29.0	у	Yes
2/5	1:22:30	649	9.5	30.0	29.0	У	Yes
2/6	1:30:00	727	12.0	30.0	29.0	У	Yes
Averages				29.8	28.2	no result	

Total Condensate collected:

2 ml

Silica gel No(s) used:

F21

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 14-Mar-19 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	14:27	Barometric P		1014	hPa	
Page No. :	1 of 1	Pitot Correcti		0.84	100	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³	
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)	
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K		
1/1	3	0.037	34.0	307.2	6.8	
1/2	81	0.039	34.0	307.2	7.0	
1/3	195	0.040	34.0	307.2	7.1	
1/4	505	0.052	34.0	307.2	8.0	
1/5	619	0.047	34.0	307.2	7.6	
1/6	697	0.046	34.0	307.2	7.6	
2/1	3	0.044	34.0	307.2	7,4	
2/2	81	0.045	34.0	307.2	7.5	
2/3	195	0.044	34.0	307.2	7.4	
2/4	505	0.049	34.0	307.2	7.8	
2/5	619	0.030	34.0	307.2	6.1	
2/6	697	0.048	34.0	307.2	7.7	
Average			34.0	307.2	7.3	

kPa

-4.8 mm

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa): 1013.53 hPa

Page 1 of 2

STACK ANALYSIS - PM10 CALCULATIONS

Date: AECOM's Project No:	14-Mar-19 60493017	Client: Stack/Duct	OneSteel H Description:	exham Shredder Sta	ck.
1. Gas Analysis					
	%				
%CO ₂	0.0				
%O ₂	20.9				
%N2+%CO	79.1				
Fraction Moisture Content, Bws	0.02	M ₃ =	0.98		
2. Molecular Weight of Stack Gas	s (Dry Basis)				
Mol. Wt. of Stack Gas (dry)	28.84				
Mol. Wt. of Stack Gas (wet)	28.58				
3. Absolute Stack Pressure					
	Pascals	in. Hg			
Barometric Pressure (Pbar)	101400	29.93			
Stack Static Pressure (Pg)	101353	29.92			
Absolute Stack Pressure		29.92			
4. Viscosity of Stack Gas					
	°C	°F			
Average Stack Temp.	34.0	93.2			
Average Meter Temperature:	31.0				
Stack Gas Viscosity		186.2			
5. Cyclone Flow Rate					
	ft ³ /min	m³/min	L/min	L/s	
Cyclone Flow Rate	0.46	0.0164	16.40	0.27	

6. Nozzle Velocity, Rmin and Rmax

Nozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
1	0.133	79.69	26.23	0.756	1.230	60.27	19.77	98.03	32.16
2	0.159	55.83	18.38	0.723	1.251	40.38	13.25	69.83	22.91
3	0.166	51.67	17.01	0.713	1.257	36.83	12.08	64.94	21.31
4	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
5	0.198	36.20	11.91	0.640	1.295	23.17	7.60	46.86	15.37
6	0.227	27.60	9.09	0.528	1.338	14.56	4.78	36.94	12.12
7	0.241	24.37	8.02	0.427	1.364	12.19	4.00	33.24	10.91
8	0.273	19.07	6.28	#NUM!	1.428	9.53	3.13	27.24	8.94
9	0.318	14.03	4.62	#NUM!	1.540	7.01	2.30	21.04	6.90
10	0.339	12.35	4.07	#NUM!	1.599	6.18	2.03	18.53	6.08
- 11	0.430	7.67	2.52	#NUM!	1.903	3.83	1.26	11.50	3.77
	Nozzle Diameter	Nozzle Diameter	Nozzle Area	Sample Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
10	0.339	0.009	0.000058	13.5					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

Date: AECOM's Project No:

14-Mar-19 60493017

Client: OneSteel Hexham Stack/Duct Description: Shredder Stack

7.Sampling Time

Total Run Time

Velocity Head (pitot) Pa	Vel Head in H20	Sqr Root	Dwell time mins
37.28	0.15	0.39	7.0
39.24	0.16	0.40	7.1 7.2
40.22	0.16	0.40	7.2
51.99	0.21	0.46	8.2
47.09	0.19	0.43	7.8
46.11	0.19	0.43	7.7
44.15	0.18	0.42	7.6
45.13	0.18	0.43	7.6
44.15	0.18	0.42	7.6
49.05	0.20	0.44	8.0
30.41	0.12	0.35	6.3
48.07	0.19	0.44	7.9
	7		
	Average	0.42	90.00
	Square	0.17	

Total time min	Full hours	Full minutes	Seconds
7.0	0	7	0
7.0		44	0
14.0	0	14	0
21.3	0	14 21	15
29.5 37.3	0	29 37	30
27.2	0	27	15
31.3		15	
45.0	0	45	0
52.8 60.3 67.8	0	52	45
60.3	1	7	15
00.0	1	7	AE.
67.8		-	45
75.8 82.0	1	15 22 30	45
82.0	1	22	0
90.0	- 1	30	0
50.0	-	- 00	-
			_
		- A	
			17
	F		
		_	_
			7 00
			1
		-	
		-	
	For the second		
1			
		_	_
	_	_	
			-
0			
			1
		-	-
		_	
	_		
	-		
	1		
_	_	_	
		-	-
		_	_
		-	
		-	-
		-	-
1			

Aerodynamic Cut Size (u_{cyc})
187.9
PM₁₀ Flow rate at actual cyclone conditions (Q_s)
0.0122

Actual D₅₀

10.5

Stack Analysis - Hazardous Substances Elemental Analysis Results

14-Mar-19 Client: OneSteel Hexham Date:

60493017 Stack/Duct Description: Shredder Stack AECOM's Project No:

	Particulate Metals Results	Gaseous Metals Results	Oxidisable Mercury Results				
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (If Required) (5C)		
Antimony	0.00015	0.00015	CONTRACTOR				
Arsenic	<0.00046	<0.0001	iberen akken	taadataaaaadaa			
Beryllium	<0.00005	<0.0001					
Cadmium	0.00037	<0.0002			WARE THE		
Chromium	0.0011	0.00049					
Cobalt	<0.0001	< 0.0001					
Copper	0.0024	0.003					
Lead	0.0033	0.0013					
Magnesium	<0.29	0.029					
Manganese	0.0019	0.0011					
Mercury	0.00005	0.000048	< 0.0001	0.00015	<0.0001		
Nickel	0.00084	0.0005					
Selenium	0.00005	< 0.0005					
Thallium	<0.0001	<0.0001					
Tin	0.008	0.0038					
Vanadium	<0.00299	<0.0039					
Zinc	<6.6	0.023					

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Client: OneSteel Hexham 14-Mar-19

60493017 Stack/Duct Description: AECOM's Project No: Shredder Stack

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	0.00015	0.00016	0.00015	0.00016	12/11/11/15/33/35/55		0.0003	0.00031	0.0009
Arsenic	<0.00046	<0.00048	<0.0001	< 0.0001	101111111111111111111111111111111111111		< 0.0001	<0.0001	< 0.00029
Beryllium	<0.00005	< 0.000052	<0.0001	< 0.0001			< 0.0001	<0.0001	<0.00029
Cadmium	0.00037	0.00039	<0.0002	< 0.00021			0.0004	0.00042	0.0012
Chromium	0.0011	0.0012	0.00049	0.00051			0.002	0.0021	0.0061
Cobalt	<0.0001	< 0.0001	<0.0001	< 0.0001			< 0.0001	< 0.0001	<0.00029
Copper	0.0024	0.0025	0.003	0.0031			0.005	0.0052	0.015
Lead	0.0033	0.0035	0.0013	0.0014			0.005	0.0052	0.015
Magnesium	< 0.29	< 0.3	0.029	0.03			0.03	0.031	0.09
Manganese	0.0019	0.002	0.0011	0.0012			0.003	0.0031	0.009
Mercury	0.00005	0.000052	0.000048	0.00005	0.00015	0.00016	0.0002	0.00021	0.00061
Nickel	0.00084	0.00088	0.0005	0.00052		eka kananin	0.001	0.001	0.0029
Selenium	0.00005	0.000052	<0.0005	< 0.00052		HERRICH !	0.00005	0.000052	0.00015
Thallium	< 0.0001	< 0.0001	<0.0001	< 0.0001			< 0.0001	< 0.0001	<0.00029
Tin	0.008	0.0084	0.0038	0.004		Alessana Pak	0.01	0.01	0.029
Vanadium	< 0.00299	< 0.0031	< 0.0039	< 0.0041	03100333333533		< 0.0001	< 0.0001	<0.00029
Zinc	<6.6	<6.9	0.023	0.024			0.02	0.021	0.061
Total Hazardous Metals*	0.0078	0.0082	0.0036	0.0038	0.00015	0.00016	0.022	0.023	0.066
Total Metals	0.018	0.019	0.062	0.065		1.50	0.077	0.081	0.23

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

1.1496 m³ Metered volume (MV₃): Average barometric

pressure (PBARO) Average gas meter temp. (T_{M.2}): 31.0 °C 1014 hPa

> 304.2 K Average pressure at

> > meter (P_{M.2}) 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure): 1.0332 m3

(B) PM10 concentration at standard conditions

Blank thimble No .: Blank weight: g Thimble No. used: M29 PM10 Weight 0.0028 a

Final PM10 Weight (Mp1): 0.00280 g

PM10 Concentration (C1): 0.0027 g/m3 (0°C, dry gas, $=M_{p1}/MV_4=$

1atm pressure)

;and C2 = 2.7 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO2%: 0.0 %

Therefore, Cc: $= C_a \times 12/CO_2\% =$ 0.0027 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and Cc1 = 2.7 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis 7 %

Average O2%: 20.9 %

0.38 g/m3 (0°C, dry gas, 1atm pressure, Therefore, Ch: =C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

02)

;and Ch1 = 380 mg/m3 (0°C, dry gas, 1atm pressure, 02)

(C) Moisture content

G024 Silica Gel Number:

0 mL (=grams) V, = 15.3 g (from laboratory report) (recorded on Volume of Water Vapour Condensed (Vwc(std)) = 0.0000

Laboratory Form Volume of Water Vapour Condensed $(V_{wsg(std)}) =$ 0.0204 108)

Therefore, Bws = (Vwc(std)+Vwsq(std))

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

B_{ws} = 1.94 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.28 kg/m3 (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.27 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1.132 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

7.31 m/s

(ii) Average of post-sampling velocities:

7.33 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 7.32 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Qstd =

3.32 m³/s (stack conditions)

Qstd = Qstack x

Ps x

(Tstd) x (100 - B_w) (Ts) 100

(1

(Pstd)

2.9 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

Rm =
$$C_{1a} \times Qstd = 0.0078$$
 g/s (0°C, dry gas, 1 atm pressure
= 7.8 mg/s (0°C, dry gas, 1 atm pressure

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

14-Mar-19

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.1272 m3

Average barometric

Average gas meter temp. (T_{M2}):

29.6 °C

pressure (PBARO)

1014 hPa

302.8 K

Average pressure at meter

(P_{M,2})

1014.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

1.0178 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .: Thimble No. used:

N23

Blank weight:

Total Particulate Weight

0.0094 g

Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):

0.00940 g

 $=M_{p1}/MV_{4}=$

0.0092 g/m3 (0°C, dry gas,

1atm pressure)

;and C2 =

9.2 mg/m3 (0°C, dry gas,

1atm pressure)

CO₂ Basis Average CO₂%:

Therefore, Cc:

12 %

0.0 %

 $= C_a \times 12/CO_2\% =$

0.0092 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and Cc1 =

9.2 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

Average O2%:

O₂ Basis

7 %

20.9 %

Therefore, Cb:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

1.3 g/m³ (0°C, dry gas, 1atm pressure,

0,)

;and Ch1 =

1300 mg/m3 (0°C, dry gas, 1atm pressure,

02)

(C) Moisture content

Silica Gel Number:

026

V. =

8.3 g (from laboratory report)

0.0040

Volume of Water Vapour Condensed (Vwc(std)) = Volume of Water Vapour Condensed (V_{wsg(std)}) =

0.0111

(recorded on Laboratory Form

3 mL (=grams)

108)

Therefore, Bws =

(Vwc(std)+Vwsq(std)) $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

Bws =

1.46 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/r

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.27 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

= 1.132 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

7.31 m/s

(ii) Average of post-sampling velocities:

7.33 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):
(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

(Pstd)

3.32 m³/s (stack conditions)

7.32 m/s (stack conditions, wet)

N/A m/s (stack conditions, wet)

Qstd = Qstack x

ack x Ps x

(Tstd) x

× (100 - B_w)

Qstd =

2.9 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

g/s (0°C, dry gas, 1 atm pressure

= 27

mg/s (0°C, dry gas, 1 atm pressure

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0566 m³

Average barometric

Average gas meter temp. (T_{M2}):

29.0 °C

pressure (PBARO)

1014 hPa

302.2 K

Average pressure at meter (P_{M,2})

1014.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

0.9559 m3

(B) Metals concentration at standard conditions

Blank thimble No .: Thimble No. used:

Blank weight: Metals Weight

0.000022 q

Final Metals Weight (Mp1): Metals Concentration (C1):

0.00002 g

 $=M_{n1}/MV_4=$

0.000023 g/m3 (0°C, dry gas,

1atm pressure)

;and Co =

0.023 mg/m3 (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO2%:

0.0 %

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.000023 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and Cc1 =

0.023 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O2 Basis

7 %

Average O2%:

20.9 %

Therefore, Cb:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.0032 g/m3 (0°C, dry gas, 1atm pressure,

02)

;and Ch1 =

3.2 mg/m3 (0°C, dry gas, 1atm pressure,

02)

(C) Moisture content

Silica Gel Number:

F21

14.7 g (from laboratory report)

0.0027

(recorded on Laboratory Form

2 mL (=grams)

Volume of Water Vapour Condensed (Vwc(std)) = Volume of Water Vapour Condensed (Vwsg(std)) =

0.0196

108)

Therefore, Bws =

(Vwc(std)+Vwsq(std)) $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

2.28 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and Density (Re-calculation)

1.28 kg/m3 (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m3 (0°C, wet, 1 atm pressure)

1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(Ps) (ii) x (273.2) x (273.2+Ts) (1013.25)

1.140 kg/m3 (stack conditions, wet)

(E) Gas Velocities

7.31 m/s (i) Average of pre-sampling velocities:

7.33 m/s (ii) Average of post-sampling velocities:

N/A m/s (iii) Average of while-sampling velocities:

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

7.32 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

Qstd =

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

3.32 m3/s (stack conditions) Vs x A = Qstack =

> Ps x (Tstd) x (100 - Bw) 100 (Pstd) (Ts)

2.9 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

Ostack x

g/s (0°C, dry gas, 1 atm pressure C_{1a} x Qstd = 0.000067 Rm = mg/s (0°C, dry gas, 1 atm pressure 0.067

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK ONESTEEL HEXHAM

14-Mar-19
FINE PARTICULATE (PM10)
TOTAL PARTICULATE
HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	33.5 °C	306.7 K
Stack pressure (average)	1014 hPa	2,440
Stack gas velocity (average, stack conditions)	7.3 m/s	
Stack gas flowrate (stack conditions)	3.3 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.9 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	12:55 -	14:25
Fine Particulate (PM10) Mass	2.8 mg	
Gas Volume Sampled	1.03 m ³	
Fine Particulate (PM10) Emission*1	2.7 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	7.8 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	12:55 -	14:25
Total Particulate Mass	9.4 mg	
Gas Volume Sampled	1.02 m ³	
Total Particulate Emission*1	9.2 mg/m ³	
Total Particulate Mass Emission Rate*2	27 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	12:55 -	14:25
Hazardous Substances (Metals) Mass	0.022 mg	
Gas Volume Sampled	0.956 m ³	
Hazardous Substances (Metals) Emission*1	0.023 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.067 mg/s	
Regulatory Limit	N/A	
Moisture Content (%)	1.9	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

 $^{^*2}$ Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

	DET	

Contact

Colin Clarke

Client Address AECOM Australia Pty Ltd 17 Warabrook Boulevard

Warabrook

NSW 2304

LABORATORY DETAILS

Manager Laboratory

Address

Adam Atkinson

SGS Melbourne EH&S 10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone Facsimile

02 8295 3600

02 8934 0001

Email

colin.clarke@aecom.com

Project

60493017 / 3.1 60493017 / 3.1

Order Number Samples

12

Telephone

Facsimile

Email

+61395743200 +61395743399

Au.SampleReceipt.Melbourne@sgs.com

SGS Reference

Date Received Date Reported ME309936 R0 19 Mar 2019

04 Apr 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

Adam Atkinson **Business Manager**

Ryan Zhang Team Leader

ME309936 R0

	St	ple Number mple Matrix Sample Date ample Name	ME309936.001 Filter 14 Mar 2019 Metals No 1	ME309936,002 Filter 14 Mar 2019 Metals No 12	ME309936.003 Impinger 14 Mar 2019 Metals No 3	ME309936.004 Impinger 14 Mar 2019 Metals No 4
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.	FL.M29.02 USEPA M29 Method: EPA2	FILT Tes	sted: 1/4/2019			
Sb	µg total	0.05	<0.05	<0.05	-	
As	µg total	0.05	0.41	0.46	-	-
Ве	µg total	0.05	<0.05	0.05		-
Cd	µg total	0.05	0.22	<0.05		•
Cr	µg total	0.05	2.0	1.7		,
Co	µg total	0.05	<0.05	<0.05	-	-
Cu	µg total	0.05	0.72	1.3	-	-
Рь	μg total	0.05	2.6	0.71		
Mg	μg total	0.05	250	290	-	1-
Mn	μg total	0.05	2.1	1.4		-
Hg	μg total	0.05	<0.05	<0.05	-	
Ni	µg total	0.05	0.47	0.23	-	
Se	µg total	0.05	0.15	0.10	-	
ті	µg total	0.05	<0.05	<0.05		
Sn	µg total	0.05	0.17	0.15	-	-
v	μg total	0.25	0.62	0.69		T - 1+1-
Zn	μg total	0.05	5600	6600		-
Metals in Impingers M29 ETC MA-14	μg total	0.1 0.1	Tested: 2/4/20	-	0.2	0.2
As	µg total	0.1			<0.1	<0.1
Be	μg total	0.1	-:-		0.2	0.2
Cd	μg total				0.6	0.8
Cr	µg total	0.1	-		0.2	<0.1
Co	µg total	0.1			3.9	3.2
Cu	μg total	0.1			53	1.4
Pb	µg total	-			27	29
Mg	µg total	0.1			5.6	1.6
Mn	µg total	0.1	-:		<0.1	0.1
Hg	μg total	0.1			1.2	0.6
Ni -	µg total	-			<0.1	0.3
Se	μg total	0.1			<0.1	<0.1
ТІ	μg total	0.1				8.1
Sn	μg total	0.1	-	•	0.4	2.3
V	μg total	0.1	-	-	0.7	2.3
Zn	μg total	0.1	•		190	/3
Sample Volume*	mL	-			85	310

ME309936 R0

		mple Number ample Matrix Sample Date Sample Name	ME309936,005 Impinger 14 Mar 2019 Metals No 8A	ME309936,006 Impinger 14 Mar 2019 Metals No 9	ME309936.007 Impinger 14 Mar 2019 Metals No 5A	ME309936.00 Impinger 14 Mar 2019 Metals No 50
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.			sted: 2/4/2019			
Sb	µg total	0.05				
As	μg total	0.05				-
Ве	μg total	0.05	-			
Cd	μg total	0.05	-			-
Cr	μg total	0.05				
Co	μg total	0.05				
Cu	μg total	0.05				
Pb	µg total	0.05				
Mg	µg total	0.05				
Mn	µg total	0.05	-			
Hg	μg total	0.05				-
Ni	μg total	0.05	-		-	
Se	μg total	0.05		-		
1	μg total	0.05				
Sn	μg total	0.05			-	
1	µg total	0.25				
Zn	µg total	0.05				
Metals in Impingers M29 ETC MA-1400.		29_METIMP 0.1	Tested: 1/4/20			
de .	µg total	-	<0.1	<0.1		
Se	µg total	0.1	<0.1	<0.1	-	•
cd .	µg total	0.1	<0.1	<0.1		
er .	, µg total	0.1	<0.1	0.2		
20	μg total	0.1	<0.1	0.3	-	
	µg total	0.1	<0.1	<0.1		-
Du Deb	μg total	0.1	0.2	<0.1		
	μg total	0.1	<0.1	<0.1	-	
//g	µg total	0.1	<0.1	<0.1	•	-
fn	μg total	0.1	0.4	0.1		-
dg	µg total	0.1	<0.1	<0.1	<0.1	<0.1
	µg total	0.1	<0.1	0.1		•
e .	µg total	0.1	0.3	0.2		
	µg total	0.1	<0.1	<0.1	•	
in .	µg total	0.1	0.1	4.1		•
	µg total	0.1	2.3	1.6		
n	μg total	0.1	<0.1	<0.1		
ample Volume*	mL		300	200	100	250

	9	nple Number ample Matrix Sample Date Sample Name	ME309936.009 Impinger 14 Mar 2019 Metals No 8B	ME309936.010 Impinger 14 Mar 2019 Metals No 11	ME309936.011 KMn04 14 Mar 2019 Metals No 5B	ME309936.012 KMn04 14 Mar 2019 Metals No 10
Parameter	Units	LOR	The said			-
Metals in Filters M29 ETC MA-1400.FL.M29.02	USEPA M29 Method: EPA2	9_FILT Tes	sted: 2/4/2019			
Sb	µg total	0.05	-	-	-	-
As	µg total	0.05	-	-	-	
Be	µg total	0.05	-	-	-	
Cd	µg total	0.05	-	-	-	•
Cr	µg total	0.05	-	-		
Co	μg total	0.05	-	-	-	•
Cu	μg total	0.05	-			•
Pb	μg total	0.05	-			-
Mg	µg total	0.05	-	-	-	-
Mn	μg total	0.05			-	
Hg	μg total	0.05	-			
Ni	µg total	0.05	-	-	(-1)	
Se	µg total	0.05	-		-	-
TI	μg total	0.05	-	-	-	-
Sn	µg total	0.05	0-	-	-	
	μg total	0.25	-	-	-	-
V	µg total µg total	0.25 0.05	-	:		:
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2	µg total	0.05 A29_METIMP	Tested: 1/4/20	019		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb	μg total 19.06 (ug total) Method: ΕΡΑ μg total	0.05 A29_METIMP 0.1	Tested: 1/4/20	019		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As	μg total 9.06 (ug total) Method: ΕΡΑ μg total μg total	0.05 A29_METIMP 0.1 0.1	Tested: 1/4/20	019		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be	μg total Method: EPA μg total μg total μg total μg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1	Tested: 1/4/20	- D19	-	
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd	μg total Method: EPA μg total μg total μg total μg total μg total μg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1	Tested: 1/4/20	- D19	-	•
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd	pg total Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 1/4/20	- D19		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr	pg total 9.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 1/4/20	- D19		
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co	pg total P9.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Tested: 1/4/20	- D19		
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu	pg total P9.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 1/4/20	019		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Co Mg	pg total P9.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 1/4/20	- D19		
v Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg	pg total P9.06 (ug total) Wethod: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	Tested: 1/4/20	D19		
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn	pg total P9.06 (ug total) Wethod: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20	- D19		
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni	pg total P9.06 (ug total) Wethod: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20	- D19		
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total Pg.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20		0.2	
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total Pg.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20		0.2	
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se Ti Sn	pg total P9.06 (ug total) Wethod: EPA pg total pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20		0.2	
V Zn Metals in Impingers M29 ETC MA-1400.IMP.M2 Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total Pg.06 (ug total) Method: EPA pg total	0.05 A29_METIMP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	- Tested: 1/4/20		0.2	

QC SUMMARY

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB025742	μg total	0.05	<0.05	114%
As	LB025742	µg total	0.05	<0.05	106%
Ве	LB025742	µg total	0.05	<0.05	93%
Cd	LB025742	µg total	0.05	<0.05	108%
Cr	LB025742	µg total	0.05	<0.05	105%
Co	LB025742	µg total	0.05	<0.05	110%
Cu	LB025742	µg total	0.05	<0.05	104%
Pb	LB025742	µg total	0.05	<0.05	112%
Mg	LB025742	µg total	0.05	<0.05	118%
Mn	LB025742	µg total	0.05	<0.05	108%
Hg	LB025742	µg total	0.05	<0.05	104%
Ni	LB025742	µg total	0.05	<0.05	104%
Se	LB025742	µg total	0.05	<0.05	99%
П	LB025742	µg total	0.05	<0.05	111%
Sn	LB025742	µg total	0.05	<0.05	106%
V	LB025742	µg total	0.25	<0.25	106%
Zn	LB025742	µg total	0.05	<0.05	107%

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC	Units	LOR	MB	LCS
	Reference	A STATE OF	-	-	%Recovery
Sb	LB025743	µg total	0.1	<0.1	111%
As	LB025743	μg total	0.1	<0.1	103%
Be	LB025743	μg total	0.1	<0.1	94%
Cd	LB025743	µg total	0.1	<0.1	105%
Cr	LB025743	µg total	0.1	<0.1	103%
Co	LB025743	µg total	0.1	<0.1	109%
Cu	LB025743	µg total	0.1	<0.1	104%
Pb	LB025743	µg total	0.1	<0.1	108%
Mg	LB025743	µg total	0.1	<0.1	117%
Mn	LB025743	µg total	0.1	<0.1	106%
Hg	LB025743	µg total	0.1	<0.1	13.39
Ni	LB025743	µg total	0.1	<0.1	103%
Se	LB025743	µg total	0.1	<0.1	95%
π	LB025743	µg total	0.1	<0.1	107%
Sn	LB025743	µg total	0.1	<0.1	104%
V	LB025743	µg total	0.1	<0.1	105%
Zn	LB025743	µg total	0.1	<0.1	105%
Sample Volume*	LB025743	mL		100	NA

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

EPA 29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A.

Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM -MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

EPA29

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS), This method is based on USEPA M29, USEPA 3015A and USEPA 6020A.

Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

 NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

†↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Austrelia/Documents/Technical%20Documents/MP-AU-ENV-DU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sqs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

18314-0-P

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

21-Mar-19

Received: 15-Mar-19

Report To:

Cye Buckland

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
M29	Thimble	*	0.0028
N23	Thimble	69.7	0.0094

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By:

Michael Campbell - Director

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2 Refer Form F422 - Measurement Uncertainty

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin: AECOM - Newcastle Report: 18314-0-M Page 1 of 1

Project: 60493017

Description: Stack Emission Samples **Date:** 21-Mar-19

Received: 15-Mar-19

Report To: Cye Buckland Copy to: FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
F21	14.7	
G024	15.3	
O26	8.3	

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Reported By:

Michael Campbell - Director

Lell

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty End of Report