Infrabuild Recycling Pty Ltd Doc No. 60493017_3.1_Q3_2019 60493017

3rd Quarter Emissions Testing Report 2019

Infrabuild Recycling Hexham

NATA ACCREDITATION No. 2778 (14391) Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards This document August not be reproduced except in full.

3rd Quarter Emissions Testing Report 2019

Infrabuild Recycling Hexham

Client: Infrabuild Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

30-Aug-2019

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	3rd Quarter Emissions Testing Report 2019
Ref	60493017
Date	29-Aug-2019
Prepared by	Colin Clarke
Reviewed by	Paul Wenta
AECOM Approved Signatory	Chad Whitburn

Revision History

Rev Revision Date		Dataila	Authorised		
		Details	Name/Position	Signature	
0	30-Aug-2019	Report for Issue	Chad Whitburn Associate Director - Compliance Services	all the	

Table of Contents

1.0	Introduction		1
2.0	Sampling Plane Requirem	nents	2
3.0	Methodology		3
	3.1 NATA Accredited	d Methods	3
	3.2 Equipment Calib	oration	3
4.0	Sampling Location		4
	4.1 Sampling Location	on Summary	4
5.0	Results		5
Apper	ndix A		
	Field Sheets (19 pages)		A
Apper	ndix B		
	Laboratory Results (8 pag	jes)	В

List of Tables

Table 1	Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	AECOM NATA Endorsed Methods	3
Table 3	Sampling Location Summary	4
Table 4	Shredder Baghouse Emission Results Summary, 8 August 2019	5
Table 5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals) Results, 8 August 2019	6
Table 6	Hazardous Substances (Metals) Elemental Analysis Results, 8 August 2019	7

1.0 Introduction

AECOM was appointed by Infrabuild Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 8 August 2019 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 19485-0-M & 19485-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME311573 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners August be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

NSW EPA Approved Methods	USEPA Methods	Method Title	
AS4323.1	USEPA (2000) Method 1	Selection of sampling positions	
AS4323.2	USEPA (2000) Method 5	Determination of total particulate matter – isokinetic manual sampling – gravimetric method	
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)	
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases	
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight	
NSW EPA OM-5	USEPA (1997) Method 201A	Determination of PM ₁₀ emissions	
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources	

 Table 2
 AECOM NATA Endorsed Methods

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 8 August 2019.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result August represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 8 August 2019

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m ³)	6.7	100
Fine Particulate (PM10) (mg/m ³)	0.54	N/A
Lead (mg/m ³)	0.0027	5.0
Mercury (mg/m ³)	0.00011	1.0
Total Hazardous Substances (Metals) (mg/m ³)	0.019	N/A

Results from testing conducted on EPL Point 1 on 8 August 2019 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals) Results, 8 August 2019					
Sampling Conditions:					
Stack internal diameter at test location	760	mm			
Stack gas temperature (average)	22.0	°C	295.2 K		
Stack pressure (average)	1005	hPa			
Stack gas velocity (average, stack conditions)	7.9	m/s			
Stack gas flowrate (stack conditions)	3.6	m³/s			
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	3.3	m³/s			
Fine Particulate (PM ₁₀) Testing					
Test Period	10:08	-	11:32		
Fine Particulate (PM ₁₀) Mass	0.6	mg			
Gas Volume Sampled	1.11	m ³			
Fine Particulate (PM ₁₀) Emission* ¹	0.54	mg/m³			
Fine Particulate (PM ₁₀) Mass Emission Rate*2	1.8	mg/s			
Regulatory Limit	N/A	mg/m³			
Total Particulate Testing					
Test Period	10:08	-	11:32		
Total Particulate Mass	7.0	mg			
Gas Volume Sampled	1.04	m ³			
Total Particulate Emission*1	6.7	mg/m³			
Total Particulate Mass Emission Rate*2	22	mg/s			
Regulatory Limit	100	mg/m³			
Hazardous Substances (Metals) Testing					
Test Period	10:08	-	11:32		
Hazardous Substances (Metals) Mass	0.025	mg			
Gas Volume Sampled	1.31	m ³			
Hazardous Substances (Metals) Emission*1	0.019	0.019 mg/m ³			
Hazardous Substances (Metals) Mass Emission Rate*2	0.062 mg/s				
Regulatory Limit	N/A				
Moisture Content (%)	1.2				
Gas Density (dry at 1 atmosphere)	1.29	kg/m³			
Dry Molecular Weight	28.8	g/g-mole			

Table 5 Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 8 August 2019

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 8 August 2019

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.000080	0.000061	0.00020	0.00015			0.00028	0.00021	0.00069
Arsenic	<0.00081	<0.00062	<0.00020	<0.00015			<0.00010	<0.000076	<0.00025
Beryllium	<0.00005	<0.000038	<0.00010	<0.000076			<0.00010	<0.000076	<0.00025
Cadmium	0.012	0.0092	0.000050	0.000038			0.012	0.0092	0.030
Chromium	0.0011	0.00084	0.00080	0.00061			0.0019	0.0015	0.0047
Cobalt	0.000030	0.000023	<0.00010	<0.000076			0.00003	0.000023	0.000074
Copper	0.0013	0.00098	0.00045	0.00034			0.0017	0.0013	0.0042
Lead	0.0029	0.0022	0.00055	0.00042			0.0035	0.0027	0.0087
Magnesium	<0.28	<0.21	0.0032	0.0024			0.0032	0.0024	0.0079
Manganese	0.0036	0.0027	0.0014	0.0010			0.0050	0.0038	0.012
Mercury	<0.00010	<0.000076	<0.00010	<0.000076	0.00015	0.00012	0.00015	0.00011	0.00037
Nickel	0.0014	0.0011	0.00020	0.00015			0.0016	0.0012	0.0040
Selenium	<0.00010	<0.000076	0.00040	0.00031			0.00040	0.00031	0.00099
Thallium	<0.00010	<0.000076	<0.00010	<0.000076			<0.00010	<0.000076	<0.00025
Tin	0.00010	0.000076	<0.00010	<0.000076			0.00010	0.000076	0.00025
Vanadium	<0.0050	<0.0038	<0.0045	<0.0034			<0.00010	<0.000076	<0.00025
Zinc	<7.7	<5.9	0.011	0.0084			0.011	0.0084	0.027
Total Hazardous Metals*	0.021	0.016	0.0036	0.0027	0.00015	0.00012	0.025	0.019	0.062
Total Metals	0.023	0.017	0.018	0.014			0.041	0.031	0.10

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

This page has been left blank intentionally.

Appendix A

Field Sheets (19 pages)

Appendix A Field Sheets (19 pages)

Q4AN(EV)-332-FM31

Liberty	Recy	clina	Hexham	ı
Linoury				σ.

AECOM's Project Number: 60493017

Emission Source: Shredder Stack

Date Sampled: 8-Aug-19

Hazardous Substances (Metals)

ANALYTE(S)

Fine Particulate (PM10) Total Particulate NSW EPA OM - 5 NSW EPA TM - 15 NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

METHOD

Sharn Crosdale

Sam Hamilton

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:8-Aug-19Client:Liberty Recycling HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

1000		Measurement/Obser	vations	
Stack Inter	nal Dimensions:			
Diameter OR Length/Wi Equivalent	Length dth (mm)	mm Width mm	Cross Sectional Area Minimum No. of sampling points=	: 0.45 m ² 12
Equivalent DiameterN/AmmDistance from sampling plane to nearest disturbances:Upstream (m) =5No. Diameters =6.6Type of Upstream Disturbance:Fan EntryDownstream (m) =2No. Diameters =2.6			Total No. of sampling No. of sampling trave sampled = No. of sampling point traverse/port =	PM2.5/10= 12 rses/ports 2 PM2.5/10= 2
Type of Do	own Stream Disturbance:	Stack Exit		
Position of	each sampling point, for	each traverse:	Exclusion of any sam numbers - comments	
	А	В	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot distances
1	33	3	33	3
2	111	81	111	81
3	225	195	225	195
4	535	505	535	505
5	649	619	649	619
5 6	727	697	727	697
7				
8				N
9				A
10			Check of total points	against
11			minimum, (yes/no) - o	
12		1		
13	T.			
14				
15	11			
16	1 M			
17	the second se		1	
18				
19			General Comments:	
20				
Signed:	SL		Checked:	

SamplePts Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

ΔΞΟΟΙ

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:	8-Aug-19	
Client:	Liberty Recycling	Hexham
AECOM	s Project No:	60493017
Stack/Du	uct Description:	Shredder Stack
Test 1:	Fine Particulate (F	PM10)
Test 2:	Total Particulate	
Test 3	Hazardous Subst	ances (Metals)

Test 3: Hazardous Substances (Metals)

Sampling time start:	9:30	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:30	0	20.9	0.0
2	9:31	0	20.9	0.0
3	9:32	0	20.9	0.0
4	9:33	0	20.9	0.0
5	9:34	0	20.9	0.0
6	9:35	0	20.9	0.0
7	9:36	0	20.9	0.0
8	9:37	0	20.9	0.0
the second second second	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3): Moisture percentage (M2):

1.00 0.20 %

Measurements

CO:	0.0000 %,(dry)	N2:	79.1 %,(dry)	
CO2:	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.9 %,(wet)	
H ₂ O:	0.20 %(=M2)			
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, wet, 1 atm pressure)	
	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

-com

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

1.17 %

Date:	8-Aug-19	
Client:	Liberty Recycling	Hexham
AECOM	s Project No:	60493017
Stack/Du	uct Description:	Shredder Stack
Test 1:	Fine Particulate (F	PM10)
Test 2:	Total Particulate	
Test 3	Hazardous Substa	ances (Metals)

Sampling time start: 11:20 Sampling port No.:

Sampling time start:	11:20	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:20	0	20.9	0.0
2	11:21	0	20.9	0.0
3	11:22	0	20.9	0.0
4	11:23	0	20.9	0.0
5	11:24	0	20.9	0.0
6	11:25	0	20.9	0.0
7	11:26	0	20.9	0.0
8	11:27	0	20.9	0.0
the second s	Averages:	0.0 ppn	n 20.9 %	0.0 %
Moisture content (M3)	: 0.99			

Moisture content (M3): Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	oositions converted to wet basis:			_
CO:	0.0000 %,(wet)	N ₂ ;	78.2 %,(wet)	
CO2:	0.0 %,(wet)	O ₂ :	20.7 %,(wet)	
H ₂ O:	1.17 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

 Date:
 8-Aug-19

 Client:
 Liberty Recycling Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Stack

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Enter Stack

Time :	10:02	Barometric Pr			hPa
Page No. :	1 of 1	Pitot Correction Factor :		0,84	2
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.29	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
	1 Carl 1997	Max.	1		A CONTRACTOR OF A
Sampling Position No.	Distance from far wall (mm)	Differential Pressure ∆P, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	0.034	20.0	293.2	6.4
1/2	81	0.040	20.0	293.2	6.9
1/3	195	0.040	20.0	293.2	6.9
1/4	505	0.041	20.0	293.2	7.0
1/5	619	0.040	20.0	293.2	6.9
1/6	697	0.042	20.0	293.2	7.1
2/1	3	0.043	20.0	293.2	7.2
2/2	81	0.046	20.0	293.2	7.4
2/3	195	0.046	20.0	293.2	7.4
2/4	505	0.051	20.0	293.2	7.8
2/5	619	0.057	20.0	293.2	8.2
2/6	697	0.048	20.0	293.2	7.6
Average			20.0	293.2	7.2

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) ; Absolute pressure in stack (hPa) : kPa -5.4 mm 1005.47 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 8-Aug	g-19					
Client: Liberty Re	cycling Hexham					
AECOM's Project No:		60493017				
Stack Description No .:	Shredder Sta	ick				
Sample Nozzle No .:	fine8		Sample Nozzle Are	ea (An):	3.55	x 10 ⁻⁵ m ²
Sampling Port No .:	1 to 2		Thimble No:		t11	
Page No:	1 of 1		Blank thimble No:		0	
Leak Check (Pre-Sam	pling)		Leak Check (Post	Sampling	1)	
Meter start: 752.5	778 Meter finish:	752.5778	Meter start:	753.7762	Meter finish:	753.7762
Time start:	9:41 Time finish:	9:42	Time start:	11:34	Time finish:	11:35
Therefore, leakage rate	= no leak	L/min	Therefore, leakage	e rate =	no leak	L/min
(>0.1 l/min. is unaccept	able)		(>0.1 l/min. is unad	cceptable)		
Repeat:			Repeat:			
Comments:			Comments:			

Sampling Record Table

Barometric Pressure:	1006 hPa (start);		1006 hPa (finish)	
Meter start:	752.5812	Time start:	10:08	
Meter correction factor (GMf) :		1.0094		

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:15	33	14.0	18.0	16.0	· · · · · · · · · · · · · · · · · · ·	Yes
1/2	0:06:45	111	14.0	19.0	16.0		Yes
1/3	0:06:45	225	14.0	20.0	16.0		Yes
1/4	0:06:45	535	14.0	23.0	17.0		Yes
1/5	0:06:45	649	14.0	25.0	18.0	14	Yes
1/6	0:06:45	727	14.0	25.0	19.0	h	Yes
2/1	0:07:00	33	14.0	26.0	19.0		Yes
2/2	0:07:15	111	14.0	26.0	20.0		Yes
2/3	0:07:15	225	14.0	26.0	20.0	· · · · · · · · · · · · · · · · · · ·	Yes
2/4	0:07:30	535	14.0	27.0	21.0		Yes
2/5	0:08:00	649	14.0	27.0	21.0		Yes
2/6	0:07:15	727	14.0	27.0	21.0		Yes
			1		100 million and 100		
Averages				24.1	18.7	no result	

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF TOTA	L PARTICULA	TE				
Date: 8-Aug-1	9					
Client: Liberty Recy	cling Hexham					
AECOM's Project No:		60493017				
Stack Description No.:	Shredder Sta	ck				
Sample Nozzle No .:	s3		Sample Nozzle	e Area (An):	2.93	x 10 ⁻⁵ m ²
Sampling Port No .:	1 to 2		Thimble No:		m30	
Page No:	1 of 1		Blank thimble	No:		
Leak Check (Pre-Sampli	ng)		Leak Check (Post Sampling	j)	
Meter start: 22214.512	2 Meter finish:	22214.5122	Meter start:	22215.6312	Meter finish:	22215.6312
Time start: 9;4	3 Time finish:	9:44	Time start:	11:36	Time finish:	11:37
Therefore, leakage rate =	no leak	L/min	Therefore, lea	kage rate =	no leak	L/min
(>0.1 l/min. is unacceptab	le)		(>0.1 l/min. is	unacceptable)		
Repeat:			Repeat:			
Comments:			Comments:			

Sampling Record Table

Barometric Pressure:	1006 hPa (start);		1006 hPa (finish)	
Meter start:	22214.5174	Time start:	10:08	
Meter correction factor (G	SMf) :	1.0137		

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:00	33	11.7	18.0	17.0		Yes
1/2	0:14:00	111	12.6	18.0	17.0		Yes
1/3	0:21:00	225	12.6	19.0	17.0		Yes
1/4	0:28:00	535	12.8	21.0	18.0		Yes
1/5	0:35:00	649	12.6	23.0	19.0		Yes
1/6	0:42:00	727	12.9	23.0	19.0		Yes
2/1	0:49:00	33	13.1	24.0	20.0		Yes
2/2	0:56:00	111	13.5	24.0	21,0	1	Yes
2/3	1:03:00	225	13.5	24.0	21.0		Yes
2/4	1:10:00	535	14.2	25.0	22.0		Yes
2/5	1:17:00	649	14.9	25.0	22.0		Yes
2/6	1:24:00	727	13.9	25.0	22.0		Yes
	m - 1		1		1		
Averages				22.4	19.6	no result	

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS) Date: 8-Aug-19 Client: Liberty Recycling Hexham AECOM's Project No: 60493017 Stack Description No .: Shredder Stack x 10⁻⁵m² Sample Nozzle No .: 3.78 Sample Nozzle Area (An): xi 1 to 2 Thimble No: Sampling Port No.1 0 Page No: 1 of 1 Blank thimble No: Leak Check (Post Sampling) Meter start: 5570.5456 Meter finish: Leak Check (Pre-Sampling) 5570.5456 5569.1218 Meter finish: 5569.1218 Meter start: Meter start: 11:38 Time finish: Time start: 9:45 Time finish: 9:46 Time start: 11:39 Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min (>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable) Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure:	1006 hPa (s	tart);	1006 hPa (finish)
Meter start:	5569.1260	Time start:	10:08
Meter correction factor (GM	f) :	1.0020	

1/2 1/3 1/4 1/5 1/6 2/1 2/2 2/3 2/4 2/5	0:07:00 0:14:00 0:21:00 0:28:00 0:35:00 0:42:00 0:49:00 0:56:00 1:03:00 1:10:00 1:17:00 1:24:00	33 111 225 535 649 727 33 111 225 535 649 727 727	14.9 16.0 16.0 16.3 16.0 16.5 16.7 17.2 17.2 17.2 18.1 19.1 17.7	18.0 18.0 19.0 20.0 21.0 21.0 22.0 22.0 22.0 22.0 23.0 24.0	Temp. (°C) 18.0 18.0 18.0 19.0 20.0 20.0 21.0 20.0 21.0 21.0 21.0		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
1/3 1/4 1/5 1/6 2/1 2/2 2/3 2/4 2/5	0:21:00 0:28:00 0:35:00 0:42:00 0:49:00 0:56:00 1:03:00 1:10:00 1:17:00	225 535 649 727 33 111 225 535 649	16.0 16.3 16.0 16.5 16.7 17.2 17.2 18.1 19.1	19.0 20.0 21.0 21.0 22.0 22.0 22.0 22.0 23.0	18.0 18.0 20.0 20.0 21.0 20.0 21.0 21.0 21.0		Yes Yes Yes Yes Yes Yes Yes Yes
1/4 1/5 1/6 2/1 2/2 2/3 2/4 2/5	0:28:00 0:35:00 0:42:00 0:56:00 1:03:00 1:10:00 1:17:00	535 649 727 33 111 225 535 649	16.3 16.0 16.5 16.7 17.2 17.2 17.2 18.1 19.1	20.0 20.0 21.0 22.0 22.0 22.0 22.0 23.0	18.0 19.0 20.0 20.0 21.0 20.0 21.0 21.0		Yes Yes Yes Yes Yes Yes Yes Yes
1/5 1/6 2/1 2/2 2/3 2/4 2/5	0:35:00 0:42:00 0:56:00 1:03:00 1:10:00 1:17:00	649 727 33 111 225 535 649	16.0 16.5 16.7 17.2 17.2 18.1 19.1	20.0 21.0 22.0 22.0 22.0 22.0 23.0	19.0 20.0 20.0 21.0 20.0 21.0 21.0		Yes Yes Yes Yes Yes Yes Yes
1/6 2/1 2/2 2/3 2/4 2/5	0:42:00 0:49:00 0:56:00 1:03:00 1:10:00 1:17:00	727 33 111 225 535 649	16.5 16.7 17.2 17.2 18.1 19.1	21.0 21.0 22.0 22.0 22.0 22.0 23.0	20.0 20.0 21.0 20.0 21.0		Yes Yes Yes Yes Yes
1/6 2/1 2/2 2/3 2/4 2/5	0:49:00 0:56:00 1:03:00 1:10:00 1:17:00	33 111 225 535 649	16.7 17.2 17.2 18.1 19.1	21.0 22.0 22.0 22.0 22.0 23.0	20.0 21.0 20.0 21.0		Yes Yes Yes Yes
2/2 2/3 2/4 2/5	0:56:00 1:03:00 1:10:00 1:17:00	111 225 535 649	17.2 17.2 18.1 19.1	22.0 22.0 22.0 23.0	21.0 20.0 21.0		Yes Yes Yes
2/3 2/4 2/5	1:03:00 1:10:00 1:17:00	225 535 649	17.2 18.1 19.1	22.0 22.0 23.0	20.0 21.0		Yes Yes
2/3 2/4 2/5	1:03:00 1:10:00 1:17:00	535 649	18.1 19.1	22.0 23.0	21.0	-	Yes
2/4 2/5	1:10:00 1:17:00	535 649	19.1	23.0			
2/5	1:17:00	649			21.0		Yes
							100
					21.0		Yes
Averages				20.8	19.6	no result	

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

 Date:
 8-Aug-19

 Client:
 Liberty Recycling Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Stack

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Substances (Metals)

Time :	11:40	Barometric Pr			hPa
Page No. :	1 of 1	Pitot Correction		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
	1.77	Max.		1	
Sampling Position No.	Distance from far wall		Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
	(mm)	∆P, kilo	11.7	1.1.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
1/1	3	Pascals 0.073	24.0	297.2	9.4
1/2	81	0.073	24.0	297.2	8.8
1/3	195	0.065	24.0	297.2	8.8
1/4	505	0.000	24.0	297.2	9.2
1/5	619	0.070	24.0	297.2	9.0
1/6	697	0.065	24.0	297.2	8.8
1/0	051	0.005	24.0	LUIL	0.0
2/1	3	0.062	24.0	297.2	8.6
2/2	81	0.058	24.0	297.2	8.4
2/3	195	0.060	24.0	297.2	8.5
2/4	505	0.047	24.0	297.2	7.5
2/5	619	0.051	24.0	297.2	7.8
2/6	697	0.053	24.0	297.2	8.0
210		0.000			
-					
			-		15
			1.6		
	-				
	-		1000		
	-	-	1		
		-			
				-	
				-	
-					
	-				
	-			-	
	21				
	-				
-			010	207.0	0.6
Average	1.1		24.0	297.2	8.6

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -6.1 mm 1005.40 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:	8-Aug-19	Client: Liberty Re		Liberty Recy	cling Hexham
AECOM's P	roject No:	60493017	Stack/Duct	Description:	Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oxidisable Mercury Results				
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCI (mg) (If Required) (5C)		
Antimony	0.00008	0.0002	000000000000000000000000000000000000000				
Arsenic	<0.00081	<0.0002	100000000000000000000000000000000000000		100000000000000000000000000000000000000		
Beryllium	<0.00005	<0.0001			1004040666666		
Cadmium	0.012	0.00005	in the second second	Sector Sector			
Chromium	0.0011	0.0008					
Cobalt	0.00003	<0.0001		0.000000000			
Copper	0.00128	0.00045		010000000000000000000000000000000000000			
Lead	0.00291	0.00055					
Magnesium	<0.2801	0.0032			2010/04/2014		
Manganese	0.0036	0.00135					
Mercury	<0.0001	< 0.0001	< 0.0001	0.000153	< 0.0001		
Nickel	0.0014	0.0002		3.0000000222			
Selenium	<0.0001	0.0004		3012333004004	2000000000000		
Thallium	<0.0001	<0.0001	29994669866568		5		
Tin	0.0001	<0.0001		100000000000			
Vanadium	<0.005	<0.0045		\$533565664566			
Zinc	<7.7002	0.011	$\begin{array}{c} (-1)^{-1}$	0.0000000000000000000000000000000000000	1913-101200-0022		

Client:

60493017 Stack/Duct Description:

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

8-Aug-19

Date:

AECOM's Project No:

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	0.000080	0.000061	0.00020	0.00015			0.00028	0.00021	0.00069
Arsenic	< 0.00081	< 0.000617	< 0.0002	< 0.000152	000000000000000000000000000000000000000	0	< 0.0001	< 0.0000762	<0.000248
Beryllium	< 0.00005	< 0.0000381	< 0.0001	<0.0000762	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	100000000000000000000000000000000000000	< 0.0001	< 0.0000762	<0.000248
Cadmium	0.012	0.0092	0.000050	0.000038	4403665555555		0.012	0.0092	0.030
Chromium	0.0011	0.00084	0.00080	0.00061	1000000000000		0.0019	0.0015	0.0047
Cobalt	0.000030	0.000023	< 0.0001	< 0.0000762	100000000000000000000000000000000000000		0.00003	0.000023	0.000074
Copper	0.0013	0.00098	0.00045	0.00034			0.0017	0.0013	0.0042
Lead	0.0029	0.0022	0.00055	0.00042	00100000000000	112111111111111111	0.0035	0.0027	0.0087
Magnesium	<0.2801	< 0.213	0.0032	0.0024			0.0032	0.0024	0.0079
Manganese	0.0036	0.0027	0.0014	0.0010	100000000000000000000000000000000000000		0.0050	0.0038	0.012
Mercury	< 0.0001	< 0.0000762	< 0.0001	< 0.0000762	0.00015	0.00012	0.00015	0.00011	0.00037
Nickel	0.0014	0.0011	0.00020	0.00015		10000000000000000000000000000000000000	0.0016	0.0012	0.0040
Selenium	< 0.0001	< 0.0000762	0.00040	0.00031			0.00040	0.00031	0.00099
Thallium	< 0.0001	< 0.0000762	< 0.0001	< 0.0000762			< 0.0001	< 0.0000762	<0.000248
Tin	0.00010	0.000076	< 0.0001	< 0.0000762			0.00010	0.000076	0.00025
Vanadium	< 0.005	< 0.00381	< 0.0045	< 0.00343			< 0.0001	<0.0000762	< 0.000248
Zinc	<7.7002	<5.87	0.011	0.0084			0.011	0.0084	0.027
Total Hazardous Metals*	0.021	0.016	0.0036	0.0027	0.00015	0.00012	0.025	0.019	0.062
Total Metals	0.023	0.017	0.018	0.014			0.041	0.031	0.10

Liberty Recycling Hexham

Shredder Stack

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

STACK ANALYSIS - PM10 CALCULATIONS

Date: AECOM's Project No:	8-Aug-19 60493017		Liberty Recy Description:		
1. Gas Analysis					
	%				
%CO,	0.0				
%O)	20,9				
%N2+%CO	79.1				
Fraction Molsture Content, Bws	0.01	M _a =	0.99		
2. Molecular Weight of Stack G	ias (Dry Basis)				
Mol. Wt. of Stack Gas (dry)	28,84				
Mol. WL of Stack Gas (wet)	28.81				
3. Absolute Stack Pressure					
	Pascals	in, Hg			
Barometric Pressure (Pbar)	100600	29.70			
Stack Static Pressure (Pg)	100540	29.68			
Absolute Stack Pressure		29.68			
4. Viscosity of Stack Gas					
	°C.	PP			
Average Stack Temp.	24.0	75.2			
Average Meter Temperature:	21.4				
Stack Gas Viscosity		182.1			
5. Cyclone Flow Rate	100				
	ft*/min	m²/min	L/min	L/s	
Cyclone Flow Rate	0.45	0.0159	15.89	0.26	

6. Nozzle Velocity, Rmin and Rmax

Vozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
The second se	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	##########	###########	0.800	1.200	#######################################	########	########	########
1	0.140	70.39	23.17	0.749	1.235	52.73	17.30	86.92	28.52
2	0.159	54.62	17.98	0.724	1.251	39.53	12.97	68.31	22.41
3	0.169	48.20	15.87	0.706	1.261	34.05	11.17	60.76	19.93
4	0.190	38.03	12.52	0.660	1.285	25.09	8.23	48.87	16.03
5	0.000	###########	##########	0.800	1.200	############	########	#######	#########
6	0.220	28.49	9.38	0.559	1.328	15.92	5:22	37.83	12.41
7	0.243	23.30	7.67	0.402	1.369	11.65	3.82	31.89	10.46
8	0.265	19.64	6.47	#NUM!	1.412	9.82	3.22	27.74	9.10
.9	0.304	14.88	4.90	#NUM!	1.505	7.44	2.44	22.33	7.33
10	0.343	11.67	3.84	#NUM!	1.615	5.83	1.91	17.50	5.74
11	0.388	9.14	3.01	#NUM!	1.757	4.57	1.50	13.71	4.50
	Nozzle Diameter	Nozzle Diameter	Nozzle Area	Sample Rate	1				
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
8	0.265	0.007	0.000035	13.5					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

mpling Time	Total Run Time	84	Number of points
Velocity Head (pitot)	Vel Head	Sqr Root	Dwell time
Pa	in H20		mins
72.59	0.29	0.54	7.6
63.77	0.26	0.51	7.2
64.75	0.26	0.51	7.2
69.65	0.28	0.53	7.5
67.69	0.27	0.52	7.4
64.75	0.26	0.51	7.2
		100000000000000000000000000000000000000	1
61.80	0.25	0.50	7.1
57.88	0.23	0.48	6.8
59.84	0.24	0.49	6.9
47.09	0.19	0.43	6.2
	0.15		
51.01	0.20	0.45	6.4
52.97	0.21	0.46	6.5
	and the second second second	Contraction of the	1.000
		-	
	-	-	
		-	
		-	
	-		
		-	
	-		
		-	
	-		-
		-	
		-	
	-	-	
		- FI	
	1		1
		-	
			· · · · · · · · · · · · · · · · · · ·
		-	
		-	
	-		
	1	-	
	1		
	1.1		
	-	-	
	-	-	
		-	
			Concernant of the
		1	
		-	
	-	1	
	-	-	
		-	
	-	-	
	-	1	
		-	
	-		
	-	1	
		-	
	-	-	
	-		
	Average	0.49	84.00

Total time min	Full hours	Full minutes	Seconds
6.3	0	6	15
13.0	0	13	0
19.8	0	19	45
26.5	0	26	30
26.5 33.3	0	33	15
40.0	0	40	0
17.0			-
47.0 54.3	0	47	0
54.3	0	54	15
61.5	1	1	30
69.0	1	9	0
77.0	1	17	0
84.3	1	24	15
	-	_	
1			
		-	
		-	-
	-		-
	1		
		10000	-
	-		
		1	
			-
			-
_			
			-
		-	
		1	
			-
		-	
	-	-	-
	-	-	
_	-		
	1	-	
	1		

Aerodynamic Cut Size (u_{eve}) 182.9 PM₁₀ Flow rate at actual cyclone conditions (Q_s) 0.0135

Actual D₅₀

9.6

TostPM10 Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Ravision 2: May 28, 2015

ALCONT

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 8-Aug AECOM's Project No		60493017		Liberty Recycli t Description:	ng Hexham Shredder S		
(A) Sample gas volur	ne at standard o	onditions					
Metered volume (MV Average gas meter te		1.2034 21.4		Average baron pressure (P _{BAR}		1006 hPa	
		294.6	к	Average press meter $(P_{M,2})$	ure at	1006.00 hPa	
Sample gas volume (gas, 1 atm pressure):		1.1080	m³				
(B) PM10 concentrati	on at standard o	onditions					
Blank thimble No.: Thimble No. used:	t11	0		Blank weight: PM10 Weight		g 0 0006 g	
Final PM10 Weight (I PM10 Concentration		0.00060	9 =M _{p1} /MV ₄ =		0.00054	g/m ³ (0°C, dry gas, 1atm pressure)	
22 P. 1			;and C ₂ =		0.54	mg/m ³ (0°C, dry gas,	
CO ₂ Basis Average CO ₂ %:	12 %	0.0 %				1atm pressure)	
Therefore, C _c :		= C _a x 12/0	CO ₂ % =	0.00054	g/m ³ (0°C, pressure, '	dry gas, 1atm 12% CO ₂)	
			;and C _{c1} =	0.54	mg/m ³ (0°C pressure, "	C, dry gas, 1atm 12% CO₂)	
O ₂ Basis	7 %					×	
Average O ₂ %:	3	20.9 %					
Therefore, C _b :	=C _a x (21	- O _{2ref} %)/(21 - C	D _{2mea} %)	0.076	i g/m ³ (0°C, 7%	dry gas, 1atm pressure, O ₂)	
			;and C _{b1} =	76	mg/m ³ (0°0 7%	C, dry gas, 1atm pressure, O_2)	
(C) Moisture content Silica Gel Number:	P3						
V _v =	11 g (from lab	oratory report)		V _w =	-2	mL (=grams) (recorded on	
Volume of Water Vap	our Condensed	$(V_{wc(std)}) =$	-0.0027			Laboratory Form	
Volume of Water Vap	our Condensed	$(V_{wsg(std)}) =$	0.0147			108)	
Therefore, $B_{ws} =$		(V _{wn(std)} +V _{wsg(std}) (std)+V _{wsg(std)} +V _i					
D -		07.0					

B_{ws} = 1.07 %

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULA Fine Particulate (PM10)	TIONS CONTINUED
(D) Gas Composition and Density (Re-calcul	ation)
(i) Initial gas density for sampling:	1.29 kg/m ³ (from Laboratory Form 107)
(ii) Re-calculated gas density based on mois content in (c):	ture 1.29 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)
(iii) Gas density at stack conditions =	(ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)
	= 1,185 kg/m ³ (stack conditions, wet)
(E) Gas Velocities	
(i) Average of pre-sampling velocities:	7.23 m/s
(ii) Average of post-sampling velocities: -	8.57 m/s
(iii) Average of while-sampling velocities:	N/A m/s
(iv) Overall average of pre-sampling and pos sampling velocities (Vs): (Note: (Vs) is from all individual data, not fro and (ii) alone.)	N/A m/s (stack conditions, wet)
(F) Volumetric Flowrates (Reference Method	US-EPA Method 2, NSW-EPA TM-2)
Qstack = Vs x A =	3.58 m ³ /s (stack conditions)
Qstd = Qstack x <u>Ps</u> x (<u>Ts</u> (Pstd) (T	std) × <u>(100 - B_w)</u> s) 100
Qstd = $3.3 \text{ m}^3/\text{s} (0^\circ \text{C}, \text{dry gas})$, 1 alm pressure)
(G) Mass Emission Rate	

Rm =	C _{1a} x Qstd =	0.0018	g/s (0°C, dry gas, 1 atm pressure)
		1.8	mg/s (0°C, dry gas, 1 atm pressure)

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 8 AECOM's Project	3-Aug-19 ot No:	60493017		Liberty Recycli Description:	ng Hexham Shredder S	tack
(A) Sample gas	volume at standard	conditions				
Metered volume	(MV ₃):	1.1270		Average baron		
Average gas me	ter temp. (T _{M,2}):	21.0	°C	pressure (PBAR	(0)	1006 hPa
		294.2	К	Average press (P _{M.2})	ure at meter	1006.00 hPa
Sample gas volu	me (MV ₄); (0°C, dry					
gas, 1 atm press	ure):	1.0391	m ³			
(B) Total Particul	ate concentration at	t standard condi	tions			
Blank thimble No				Blank weight:		g
Thimble No. use				Total Particula	te Weight	0.0070 g
	ulate Weight (Mp1)				0.0007	g/m3 (0°C, dry gas,
Total Particulate	Concentration (C1):		=M _{p1} /MV ₄ =		0.0067	1atm pressure)
			;and C ₂ =		6.7	mg/m ³ (0°C, dry gas,
CO ₂ Basis	12 %					1atm pressure)
Average CO ₂ %:		0.0 %				
Therefore, C _c		= C _a x 12/0	CO ₂ % =	0.0067	g/m ³ (0°C, o pressure, 1	dry gas, 1atm 2% CO ₂)
			;and C _{c1} =	6.7	mg/m ³ (0°C pressure, 1	, dry gas, 1atm 2% CO ₂)
O ₂ Basis	7 %					7.5.9
Average O ₂ %:		20.9 %				
Therefore, C_{b} :	=C _a x (21	- O _{2ref} %)/(21 - C) _{2mea} %)	0.94	g/m ³ (0°C, 0 7%	dry gas, 1atm pressure, O ₂)
			;and C _{b1} =	940) mg/m ³ (0°C 7%	, dry gas, 1atm pressure O ₂)
(C) Moisture con Silica Gel Numbe						
V _v =	13.2 g (from lat	poratory report)		V _w =	-4	mL (=grams)
Volume of Water	Vapour Condensed		-0.0053			(recorded on Laboratory Form
and the second	Vapour Condensed		0,0176			108)
Therefore, B _{ws} =		(Vwer(stel)+Vwsg(stel)				1. The second
		vc(std)+Vwsg(std)+Vn				
B _{ws}	-	1.17 %				

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(b) eee eenipeenen ene eenen) (is seisenen (
(i) Initial gas density for sampling:	1.29 kg/m ³ (from Laboratory Form 107)
(ii) Re-calculated gas density based on moisture content in (c):	1.29 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)
(iii) Gas density at stack conditions =	(ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)
-	1.185 kg/m ³ (stack conditions, wet)
(E) Gas Velocities	
(i) Average of pre-sampling velocities:	7.23 m/s
(ii) Average of post-sampling velocities:	8.57 m/s
(iii) Average of while-sampling velocities:	N/A. m/s
 (Iv) Overall average of pre-sampling and post- sampling velocities (Vs): (Note: (Vs) is from all individual data, not from (i) and (ii) alone.) 	7.90 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)
(F) Volumetric Flowrates (Reference Method US-EPA	A Method 2, NSW-EPA TM-2)
Qstack = Vs x A =	3.58 m ³ /s (stack conditions)
Qstd = Qstack x Ps x (Tstd) x (Pstd) (Ts)	<u>(100 - B_w)</u> 100

Qstd = 3.3 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.022	g/s (0°C, dry gas, 1 atm pressure)
	*	22	mg/s (0°C, dry gas, 1 atm pressure)

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals) (Calculations performed in accordance with relevant test method as defined on cover page)

ECOM's Project No:	g-19	Client 60493017 Stack	Liberty Recyc Duct Description:	Shredder Stack	
 Sample gas volum 	ne at standard co	nditions			
etered volume (MV ₃ verage gas meter te		1.4192 m ³ 20.2 °C	Average baro pressure (P _{BA}	- X -	hPa
	(W.27	293.4 K	Average press (P _{M.2})		
ample gas volume (I					
as, 1 atm pressure):		1.3120 m ³			
) Metals concentrat	ion at standard co	onditions			
lank thimble No.:			Blank weight:		g
nimble No. used:		0	Metals Weigh	0 000025	9
nal Metals Weight (etals Concentration		0.00003 g =M _{p1} /I	∕IV ₄ =	0.000019 g/m ³ (0°C, 1atm press	
		;and C	2 ⁼	0.019 mg/m ³ (0°(
		0.0		1atm press	sure)
verage CO ₂ %:	C	0.0 %			
herefore, C _c .		= C _a x 12/CO ₂ % =	0.00001	g g/m ³ (0°C, dry gas, 1at pressure, 12% CO ₂)	tm
		;and C	c ₁ = 0.01	9 mg/m ³ (0°C, dry gas, 1 pressure, 12% CO ₂)	atm
2 Basis	7 %				
verage O ₂ %:	20).9 %			
herefore, C _b :	=C _a x (21 -	O _{2ref} %)/(21 - O _{2mea} %)	0.002	7 g/m ³ (0ºC, dry gas, 1at 7% O ₂)	tm pressure,
		;and C	2 _{b1} = 2.	7 mg/m ³ (0°C, dry gas, 1 7% O ₂)	atm pressure,
2) Moisture content ilica Gel Number:					
	14.6 g (from labo	ratory report)	V =		
olume of Water Vap	our Condensed (V _{wc(std)}) = -0.0	027		
olume of Water Vap	our Condensed ($V_{wsg(std)}) = 0.0$	195	108)	1.5.00
herefore, B _{ws} =		(wc(std)+Vwsg(std)) td)+Vwsg(std)+Vm(std))			
B _{ws} =	1.	27 %			
² Basis verage O_2 %: herefore, C_b : c) Moisture content ilica Gel Number: v = content olume of Water Vap olume of Water Vap	7 % 20 =C _a x (21 - 1 018 14 6 g (from labo bour Condensed (bour Condensed ((V _{wc(s}	0.0 % = $C_a \times 12/CO_2\% =$;and C 0.9 % $O_{2rer}\%)/(21 - O_{2mea}\%)$;and C ratory report) $V_{wc(std)} = -0.(C_{vwsg(std)}) = 0.(C_{vwsg(std)})$ $t_{wsg(std)} + V_{wsg(std)})$	0.00001 c1 = 0.01 0.002 cb1 = 2, V _w = 027	1atm press 9 g/m ³ (0°C, dry gas, 1at pressure, 12% CO ₂) 9 mg/m ³ (0°C, dry gas, 1 pressure, 12% CO ₂) 7 g/m ³ (0°C, dry gas, 1at 7% O ₂) 7 mg/m ³ (0°C, dry gas, 1at 7% O ₂) 7 mg/m ³ (0°C, dry gas, 1at 7% O ₂) 7 mg/m ³ (0°C, dry gas, 1at 7% O ₂) 7 mg/m ³ (0°C, dry gas, 1at 7% O ₂) 7 mg/m ³ (0°C, dry gas, 1at 7% O ₂)	sure) Im atm tm pressure atm pressure ns) on

Q4AN(EV)-332-FM31

(Ps) (1013.25)

Linioo	ion mode	arement	Julioun	arro	no op	readoneer
	NALYSIS - Substances (N	FINAL CAL	CULATIO	NS C	ONTIN	UED
(D) Gas Co	omposition ar	d Density (Re-	calculation)		
(i) Initial ga	as density for	sampling:			1,29	kg/m ³ (from Laboratory Form 107)
(ii) Re-calc content in		ensity based or	n moisture			kg/m ³ (0°C, wet, 1 atm pressure) kg/m ³ (0°C, dry, 1 atm pressure)
(ili) Gas de	ensity at stack	conditions =				(ii) x <u>(273.2)</u> x <u>(Ps</u> (273.2+Ts) (1013.25
			=		1.194	kg/m ³ (stack conditions, wet)
(E) Gas Ve	elocities					
(i) Average	e of pre-samp	ling velocities:			7.23	m/s
(ii) Average	e of post-sam	pling velocities	i;		8.57	m/s
(iii) Áverag	e of while-sa	mpling velocitie	es:		N/A	m/s
sampling v	velocities (Vs)) is from all in	ere-sampling ar : dividual data, r				m/s (stack conditions, wet) m/s (stack conditions, wet)
(F) Volume	etric Flowrates	s (Reference M	lethod US-	EPA	Method 2	, NSW-EPA TM-2)
Qstack =		Vs x A =			3.58	m ³ /s (stack conditions)
Qstd =	Qstack x	<u>Ps</u> x (Pstd)	<u>(Tstd)</u> (Ts)	× (<u>100 - B_w)</u> 100	
Qstd =	3	2 m³/s (0°C, d	ry gas, 1 at	m pre	essure)	
(G) Mass B	Emission Rate	e				
				den ti	1.1.1.1.1.	

Rm =	C _{1a} x Qstd =	0.000062	g/s (0°C, dry gas, 1 atm pressure)
	=	0.062	mg/s (0°C, dry gas, 1 atm pressure)

AECOM

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, LIBERTY RECYCLING H 8-Aug-19 FINE PARTICULATE (F TOTAL PARTICULA HAZARDOUS SUBSTANCES	PM10) TE
Sampling Conditions: Stack internal diameter at test location	760 mm
Stack gas temperature (average) Stack pressure (average) Stack gas velocity (average, stack conditions)	22.0 °C 295.2 K 1005 hPa 7.9 m/s
Stack gas flowrate (stack conditions) Stack gas flowrate (0ºC, dry gas, 1 atm pressure)	3.6 m ³ /s 3.3 m ³ /s
Fine Particulate (PM10) Testing Test Period Fine Particulate (PM10) Mass Gas Volume Sampled Fine Particulate (PM10) Emission*1 Fine Particulate (PM10) Mass Emission Rate*2 Regulatory Limit	10:08 - 11:32 0.6 mg 1.11 m ³ 0.54 mg/m ³ 1.8 mg/s N/A
Total Particulate Testing Test Period Total Particulate Mass Gas Volume Sampled Total Particulate Emission*1 Total Particulate Mass Emission Rate*2 Regulatory Limit	10:08 - 11:32 7.0 mg 1.04 m ³ 6.7 mg/m ³ 22 mg/s 100 mg/m ³
Hazardous Substances (Metals) Testing Test Period Hazardous Substances (Metals) Mass Gas Volume Sampled Hazardous Substances (Metals) Emission*1 Hazardous Substances (Metals) Mass Emission Rate*2 Regulatory Limit	10:08 - 11:32 0.025 mg 1.31 m ³ 0.019 mg/m ³ 0.062 mg/s N/A
Moisture Content (%) Gas Density (dry at 1 atmosphere) Dry Molecular Weight	1.2 1.29 kg/m ³ 28.8 g/g-mole

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{atd} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017/4.1	Report :	19485	5-0-P	Page 1 of 1
Description :	Stack Emission Samples Received: 14-Aug-19	<u>Date :</u>	16-Au	ıg-19	
<u>Report To :</u>	Colin Clarke 17 Warabrook Blvd, Warabrook NSW 2304	Copy to:	FILE		
Thimble ID		Volume	(mL)	Partic	Total ulate Matter (g)
M30	Thimble	-		().0070
T11	Thimble	÷		().0006

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing Reported By: J. Canpul

Jason Campbell - Manager

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2 Refer Form F422 - Measurement Uncertainty

Note : Sampled by Client

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017/4.1	Report :	19485-0-M	Page 1 of 1
Description :	Stack Emission Samples Received: 14-Aug-19	Date :	16-Aug-19	
<u>Report To :</u>	Colin Clarke 17 Warabrook Blvd, Warabrook NSW 2304	Copy to:	FILE	
Jar ID	Мо	oisture (g)		
007		13.2		
018		14.6		
P3		11.0		

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing Reported By: J. Campunt

Jason Campbell - Manager

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty

			· · · · · · · · · · · · · · · · · · ·
Contact	Colin Clarke	Manager	Adam Atkinson
Client	AECOM Australia Pty Ltd	Laboratory	SGS Melbourne EH&S
Address	17 Warabrook Boulevard Warabrook NSW 2304	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	02 8295 3600	Telephone	+61395743200
Facsimile	02 8934 0001	Facsimile	+61395743399
Email	colin.clarke@aecom.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	60493017/4.1	SGS Reference	ME311573 R0
Order Number	60493017/4.1	Date Received	15 Aug 2019
Samples	12	Date Reported	29 Aug 2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

Adam Atkinson Business Manager

han

Ryan Zhang Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment. Health and Safety Bldg 10. 58

Bldg 10. 585 Blackburn Rd Notting Hill VIC 3168

t +61 3 9574 3200 Australia f +61 3 9574 3399

www.sgs.com.au

ME311573 R0

	S	nple Number ample Matrix Sample Date ample Name	ME311573,001 Filter 08 Aug 2019 Metals_1	ME311573.002 Impinger 08 Aug 2019 Metals_3	ME311573.003 Impinger 08 Aug 2019 Metals_4	ME311573.004 Impinger 08 Aug 2019 Metals_5A
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA2	9_FILT Te	sted: 26/8/2019			
Sb	µg total	0.05	0.13			•
As	µg total	0.05	0.49			
Be	µg total	0.05	0.05			
Cd	µg total	0.05	12			
Cr	µg total	0.05	3.1	-	-	
Co	µg total	0.05	0.08	-		
Cu	µg total	0.05	1.8		-	
РЬ	µg total	0.05	2.8	-	-	-
Mg	µg total	0.05	270	-		
Mn	µg total	0.05	3.8	-	-	-
Hg	µg total	0.05	<0.05		-	
Ni	µg total	0.05	1.6		-	-
Se	µg total	0.05	<0.05			
ті	µg total	0.05	<0.05	-	•	-
Sn	µg total	0.05	0.18	•	-	
v	µg total	0.25	2.0		-	-
Zn	µg total	0.05	7000		-	

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 28/8/2019

Sample Volume*	mL	-		96	300	96
Zn	µg total	0.1		6.8	12	•
v	µg total	0.1		0.6	2.7	
Sn	µg total	0.1	-	<0.1	<0.1	
п	µg total	0.1		<0.1	<0.1	
Se	µg total	0.1		<0.1	0.5	-
Ni .	µg total	0.1	•	<0.1	0.4	
Hg	µg total	0.1		<0.1	<0.1	<0.1
Mn	µg total	0.1	-	1.3	1.4	
Mg	µg total	0.1		5.9	3.9	•
Pb	µg total	0.1		0.8	0.6	
Cu	µg total	0.1	•	0.1	0.5	
Co	µg total	0.1		<0.1	<0.1	
Cr	µg total	0.1		<0.1	1.4	
Cd	µg total	0.1	-	<0.1	0.1	
Be	µg total	0.1		<0.1	<0.1	
As	µg total	0.1	- C.	<0.1	0.2	-
Sb	µg total	0.1		<0.1	0.3	

ME311573 R0

The state			ample Number Sample Matrix Sample Date Sample Name	ME311573.005 KMn04 08 Aug 2019 Metals_5B	ME311573.006 Impinger 08 Aug 2019 Metals_5C	ME311573.007 Impinger 08 Aug 2019 Metals_8A	ME311573.008 Impinger 08 Aug 2019 Metals_8B
Parameter		Units	LOR			1 212	
Metals in Filters M29 ETC	MA-1400.FL.M29.02 USEPA M29	Method: EPA	29_FILT Te	sted: 28/8/2019			
Sb		µg total	0.05		-		
As		µg total	0.05			-	
Be		µg total	0.05				
Cd		µg total	0.05			-	
Cr		µg total	0.05		-		•
Co		µg total	0.05		•		
Cu		µg total	0.05		-	-	
Pb		µg total	0.05		-	-	
Mg		µg total	0.05		-		
Mn		µg total	0.05				
Hg		µg total	0.05		-		
Ni		µg total	0.05	-	-	-	
Se		µg total	0.05				
ті		µg total	0.05	· · ·	~	-	
Sn		µg total	0.05	-		-	-
v		µg total	0.25	-		-	
Zn		µg total	0.05	-			-

Metals in Impingers M29 ETC MA-1400.JMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 26/8/2019

ample Volume*	mL		380	250	300	210
Zn	µg total	0.1		•	0.2	
V	µg total	0.1	•		3.5	
ŝn	µg total	0.1	-	-	<0.1	
ті	µg total	0.1		-	<0.1	
Se	µg total	0.1		-	<0.1	
Ni	µg total	0.1	•	•	<0.1	
Hg	µg total	0.1	0.2	<0.1	<0.1	<0.1
Mn	µg total	0.1		-	<0.1	
Mg	µg total	0.1		-	0.1	
Pb	µg total	0.1			<0.1	
Cu	µg total	0.1			<0.1	
Co	µg total	0.1			<0.1	-
Cr	µg total	0.1			<0.1	
Cd	µg total	0.1	-		<0.1	
Be	µg total	0.1		•	<0.1	
As	µg total	0.1	-		0.2	
Sb	µg total	0.1			<0.1	-

ME311573 R0

	S	nple Number ample Matrix Sample Date ample Name	ME311573.009 Impinger 08 Aug 2019 Metals_9	ME311573.010 KMn04 08 Aug 2019 Metals_10	ME311573.011 Impinger 08 Aug 2019 Metals_11	ME311573.012 Filter 08 Aug 2019 Metals_12
Parameter	Units	LOR	and the second	2 July	and the second	-
Metals in Filters M29 ETC MA-1400.FL.M2	29.02 USEPA M29 Method: EPA2	9_FILT Te	sted: 28/8/2019			
Sb	µg total	0.05				0.05
As	µg total	0.05	-	-		0.61
Be	µg total	0.05		-	-	0.05
Cd	µg total	0.05	-			<0.05
Cr	µg total	0.05	-			2.0
Co	µg total	0.05			-	<0.05
Cu	µg total	0.05		-	-	0.62
РЪ	µg total	0.05				0.69
Mg	µg total	0.05		-		280
Mn	µg totai	0.05				1.5
Hg	µg total	0.05		-	-	<0.05
Ni	µg total	0.05				0.20
Se	µg total	0.05			-	<0.05
п	µg total	0.05				<0.05
Sn	µg total	0.05			-	0.08
v	µg total	0.25		-	-	1.5
Zn	µg total	0.05				7700

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 26/8/2019

V Zn	µg total	0.1	0.8			
Sn	µg total	0.1	1.0			
		0.1	<0.1			
TI	µg total	0.1	<0.1			
Se	µg total	0.1	0.1		-	
Ni	µg total	0.1	0.2			
Hg	µg total	0.1	<0.1	<0.1	<0.1	
Mn	µg total	0.1	<0.1	-	-	
Mg	µg total	0.1	0.6			
Рь	µg total	0.1	<0.1			
Cu	µg total	0.1	<0.1			
Co	µg total	0.1	<0.1	4		
Cr	µg total	0.1	0.6	-		
Cd	µg total	0.1	<0.1			
Be	µg total	0.1	<0.1			
As	µg total	0.1	<0.1			
Sb	µg total	0.1	0.1			•

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA'. the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method EPA29_FILT

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB028276	µg total	0.05	<0.05	99%
As	LB028276	µg total	0.05	<0.05	96%
Be	LB028276	µg total	0.05	<0.05	97%
Cd	LB028276	µg total	0.05	<0.05	99%
Cr	LB028276	µg total	0.05	<0.05	100%
Co	LB028276	µg total	0.05	<0.05	102%
Cu	LB028276	µg total	0.05	<0.05	104%
Pb	LB028276	µg total	0.05	<0.05	102%
Mg	LB028276	µg total	0.05	<0.05	95%
Mn	LB028276	µg total	0.05	<0.05	100%
Hg	LB028276	µg total	0.05	<0.05	100%
Ni	LB028276	µg total	0.05	<0.05	101%
Se	LB028276	µg total	0.05	<0.05	102%
ті	LB028276	µg total	0.05	<0.05	101%
Sn	LB028276	µg total	0.05	<0.05	101%
v	LB028276	µg total	0.25	<0.25	101%
Zn	LB028276	µg total	0.05	<0.05	104%

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	OC Reference	Units	LOR	МВ	LCS %Recovery
Sb	LB028277	µg total	0.1	<0.1	99%
As	LB028277	µg total	0.1	<0.1	96%
Be	LB028277	µg total	0.1	<0.1	97%
Cd	LB028277	µg total	0.1	<0.1	99%
Cr	LB028277	µg total	0.1	<0.1	100%
Co	LB028277	µg total	0.1	<0.1	102%
Cu	LB028277	µg total	0.1	<0.1	104%
РЬ	LB028277	µg total	0.1	<0.1	102%
Mg	LB028277	µg total	0.1	<0.1	95%
Mn	LB028277	µg total	0.1	<0.1	100%
Hg	LB028277	µg total	0.1	<0.1	
Ni	LB028277	µg total	0.1	<0.1	101%
Se	LB028277	µg total	0.1	<0.1	102%
п	LB028277	µg total	0.1	<0.1	101%
Sn	LB028277	µg total	0.1	<0.1	101%
v	LB028277	µg total	0.1	<0.1	101%
Zn	LB028277	µg total	0.1	<0.1	104%
Sample Volume*	LB028277	mL		1.0	NA

METHOD SUMMARY

tively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is	EPA 29
USEPA 6020A.	
sample preparation methods.	
ncentrated acid using microwave heating by the CEM -MarsXPress (with	
ion system. The sample and acid are placed in a microwave vessel	
the microwave unit. After cooling, the vessel contents are diluted with nd analysed by ICP MS.	
achable metals by Inductively Coupled Plasma-Mass Spectrometer	EPA29
A M29. USEPA 3015A and USEPA 6020A.	
d or digested using the appropriate sample preparation methods.	
가는 New York, New Yo	PA29

FOOTNOTES

IS	Insufficient sample for analysis.	LOR	Limit of Reporting	
LNR	Sample listed, but not received.	11	Raised or Lowered Limit of Reporting	
	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance	
	performance of this service.	QFL	QC result is below the lower tolerance	
**	Indicative data, theoretical holding time exceeded.		The sample was not analysed for this analyte	
	and the second	NVL	Not Validated	

Unless it is reported that sampling has been performed by SGS. the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example. Total PAHs. Total OC Pesticides) the total will be calculated as the sum of the individual analytes. with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg. the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported. measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2. providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP. radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP. less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.an.pv.sqs.vnen-ghteroninninent.

This document is issued by the Company under its General Conditions of Service accessible at Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced. except in full.

End of Report

17 Warabrook Boulevard, Warabrook, NSW 2304 PO Box 73 Hunter Region MC NSW 2310 T +61 2 4911 4900 F +61 2 4911 4999

www.aecom.com