

Infrabuild Recycling Hexham Infrabuild Recycling Pty Ltd Doc No. 60493017_5.1_Q1_2020 60493017

1st Quarter Emissions Testing Report 2020

Infrabuild Recycling Hexham

NATA ACCREDITATION No. 2778 (14391) Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards This document November not be reproduced except in full.

1st Quarter Emissions Testing Report 2020

Infrabuild Recycling Hexham

Client: Infrabuild Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

14-Apr-2020

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Infrabuild Recycling Hexham 1st Quarter Emissions Testing Report 2020 Commercial-in-Confidence

Quality Information

Document	1st Quarter Emissions Testing Report 2020
Ref	60493017
Date	14-Apr-2020
Prepared by	Sharn Crosdale
Reviewed by	Paul Wenta
AECOM Approved Signatory	Chad Whitburn

Revision History

Pov	Davisian Data	Dataila	Authorised			
Rev	Revision Date	Details	Name/Position	Signature		
0	14-Apr-2020	Report for Issue	Chad Whitburn Associate Director - Compliance Services	all		

Table of Contents

1.0	Introduction		1
2.0	Sampling Plane Re	equirements	2
3.0	Methodology	•	3
	3.1 NATA Ac	credited Methods	3
	3.2 Equipme	nt Calibration	3
4.0	Sampling Location		4
	4.1 Sampling	Location Summary	4
5.0	Results	-	5
Apper	idix A		
	Field Sheets (17 pa	ages)	A
Apper	idix B		
•••	Laboratory Results	s (8 pages)	В

List of Tables

Table 1	Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	AECOM NATA Endorsed Methods	3
Table 3	Sampling Location Summary	4
Table 4	Shredder Baghouse Emission Results Summary, 27 March 2020	5
Table 5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals) Results, 27 March 2020	6
Table 6	Hazardous Substances (Metals) Elemental Analysis Results, 27 March 2020	7

1

1.0 Introduction

AECOM was appointed by Infrabuild Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 27 March 2020 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 21319-0-M & 21319-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME314465 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1	N/A	Selection of sampling positions
AS4323.2	N/A	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201A	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 27 March 2020.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result November represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 27 March 2020

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m ³)	27	100
Fine Particulate (PM10) (mg/m ³)	4.0	N/A
Lead (mg/m ³)	0.0156	5.0
Mercury (mg/m ³)	0.000165	1.0
Total Hazardous Substances (Metals) (mg/m ³)	0.034	N/A

Results from testing conducted on EPL Point 1 on 27 March 2020 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM10), Total Particulate and Hazardous Substance (Metals) Results, 27 March 2020

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	21.7	°C	294.9 K
Stack pressure (average)	1026	hPa	
Stack gas velocity (average, stack conditions)	6.9	m/s	
Stack gas flowrate (stack conditions)	3.1	m³/s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.9	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	10:45	-	16:15
Fine Particulate (PM10) Mass	4.3	mg	
Gas Volume Sampled	1.07	m ³	
Fine Particulate (PM ₁₀) Emission* ¹	4.0	mg/m³	
Fine Particulate (PM10) Mass Emission Rate*2	12	mg/s	
Regulatory Limit	N/A		
Total Particulate Testing			
Test Period	10:45	-	16:15
Total Particulate Mass	25.5	mg	
Gas Volume Sampled	0.952	m ³	
Total Particulate Emission*1	27	mg/m ³	
Total Particulate Mass Emission Rate*2	78	mg/s	
Regulatory Limit	100	mg/m ³	
Hazardous Substances (Metals) Testing			
Test Period	10:45	-	16:15
Hazardous Substances (Metals) Mass	0.0415	mg	
Gas Volume Sampled	1.22	m ³	
Hazardous Substances (Metals) Emission*1	0.034	mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.098	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	0.8		
Gas Density (dry at 1 atmosphere)	1.29	kg/m ³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

*3 Sample collected over two periods (10:45 - 11:44 and 15:50 - 16:15) due to operational requirements.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 27 March 2020

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	<0.00083	<0.000683	<0.0019	<0.00156			<0.0001	<0.0000823	<0.000237
Arsenic	<0.00062	<0.00051	0.00005	0.0000411			0.00005	0.0000411	0.000118
Beryllium	0.00001	0.00000823	<0.0001	<0.0000823			0.00001	0.00000823	0.0000237
Cadmium	0.00044	0.000362	0.00015	0.000123			0.00059	0.000485	0.00139
Chromium	0.0014	0.00115	0.0008	0.000658			0.0022	0.00181	0.00521
Cobalt	0.00004	0.0000329	<0.0001	<0.0000823			0.00004	0.0000329	0.0000946
Copper	0.00279	0.00229	0.0018	0.00148			0.0046	0.00378	0.0109
Lead	0.00202	0.00166	0.017	0.014			0.019	0.0156	0.0449
Magnesium	0.101	0.0831	0.0169	0.0139			0.12	0.0987	0.284
Manganese	0.0115	0.00946	0.0049	0.00403			0.016	0.0132	0.038
Mercury	<0.0001	<0.0000823	<0.0001	<0.0000823	0.000201	0.000165	0.0002	0.000165	0.000475
Nickel	0.00261	0.00215	0.0005	0.000411			0.0031	0.00255	0.00733
Selenium	<0.0004	<0.000329	<0.0005	<0.000411			<0.0001	<0.000823	<0.000237
Thallium	<0.0001	<0.0000823	<0.0001	<0.0000823			<0.0001	<0.000823	<0.000237
Tin	<0.00023	<0.000189	0.0003	0.000247			0.0003	0.000247	0.00071
Vanadium	<0.00025	<0.000206	<0.00025	<0.000206			<0.0001	<0.000823	<0.000237
Zinc	<7.9015	<6.5	0.068	0.0559			0.068	0.0559	0.161
Total Hazardous Metals*	0.018	0.0148	0.0234	0.0193	0.000201	0.000165	0.042	0.034	0.0982
Total Metals	0.122	0.1	0.11	0.0908			0.234	0.193	0.554

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Infrabuild Recycling Hexham 1st Quarter Emissions Testing Report 2020 Commercial-in-Confidence 8

This page has been left blank intentionally.

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Q4AN(EV)-332-FM31

Infrabuild Recycling Hexham

AECOM's Project Number:

60493017

Emission Source: Shredder Stack

Date Sampled: 27-Mar-20

ANALYTE(S)

Fine Particulate (PM10)

Total Particulate

Hazardous Substances (Metals)

METHOD NSW EPA OM - 5 NSW EPA TM - 15 NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Sharn Crosdale

Intono Sam Hamilton

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:27-Mar-20Client:Infrabuild Recycling HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

Measurement/Observations						
Stack Inter	nal Dimensions:					
Diameter OR	760 Lenath	mm Width	Cross Sectional Area	: 0.45 m ²		
Length/Wig	dth (mm)		Minimum No. of			
Equivalent	Diameter N/A	mm	sampling points=	12		
Distance fr nearest dis	om sampling plane to turbances:		Total No. of sampling	points = PM2.5/10=	12 12	
			No. of sampling traver	rses/ports		
Upstream ((m) = 5		sampled =		2	
No. Diamet	ters = 6.6			PM2.5/10=	2	
Type of Up	stream Disturbance:	Fan Entry	No. of sampling points	s on each		
Downstrea	m (m) = 2		traverse/port =		6	
No. Diamet	ters = 2.6			PM2.5/10=	6	
Type of Do	wn Stream Disturbance:	Stack Exit				
			Exclusion of any samp	ole point		
Position of	each sampling point, for e	each traverse:	numbers - comments:			
	· A	В	PM10/2.5 A	PM2.5/10 I	в	
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot dist	ances	
1	.33	.3	33	3		
2	111	81	111	81		
3	225	195	225	195		
4	535	505	535	505		
5	649	619	649	619		
6	727	697	727	697		
7						
8			5			
9						
10			Check of total points a	igainst		
11			minimum, (yes/no) - co	omments:		
12						
13						
14						
15						
16						
17	·					
18	5					
19			General Comments:			
20			N. Noveman			
Signed:	Buchand		Checked:	2	-	

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

0.30 %

Date:27-Mar-20Client:Infrabuild Recycling HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

Sampling time start:	10:45	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:45	0	20.9	0.0
2	10:46	0	20.9	0.0
3	10:47	0	20.9	0.0
4	10:48	0	20.9	0.0
5	10:49	0	20.9	0.0
6	10:50	0	20.9	0.0
7	10:51	0	20.9	0.0
8	10:52	0	20.9	0.0
	Averages:	0.0 pp	om 20.9	% 0.0 %
Moisture content (M3):	1.00			

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO2:	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.9 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.8 %,(wet)	
H ₂ O:	0.30 %(=M2)			
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 27-Mar-20 Client: Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack Test 1: Fine Particulate (PM10) Test 2: **Total Particulate**

Test 3: Hazardous Substances (Metals)

Sampling time start:	16:01	Sampling port No.	.:	0		
Measurement No.	Time sampled	CO (ppm). (dry)		O ₂ (%), (dry)	CO ₂ (%), (dry)	
1	16:01	0		20.9	0.0	
2	16:02	0		20.9	0.0	
3	16:03	0		20.9	0.0	
4	16:04	0		20.9	0.0	
5	16:05	0		20.9	0.0	
6	16:06	0		20.9	0.0	
7	16:07	0		20.9	0.0	
8	16:08	0		20.9	0.0	
	Averages:	0.0	ppm	20.9	% 0.0	%
Moisture content (M3):	1.00					
Moisture percentage (N	<i>M</i> 2): 0.49	%				

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO2:	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.7 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.8 %,(wet)	
H ₂ O:	0.49 %(=M2)			
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:27-Mar-20Client:Infrabuild Recycling HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

Time :	10:41	Barometric P	ressure :	1026	hPa
Page No. :	1 of 1	Pitot Correction	on Factor :	0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.29	kg/m ³
Pitot Tube Type :	S		2		(0 °C. Wet. 1 Atm)
		Max.			
Sompling Desition	Distance	Differential	Mox Tomp	May Tana (Ta)	
Sampling Position	from far wall	Pressure	wax remp.	Max Temp. (TS)	Corrected Velocity
INO.	(mm)	ΔP, kilo	-C	n n	(vs) m/s
		Pascals			
1/1	3	0.034	19.0	292.2	6.3
1/2	81	0.039	20.0	293.2	6.8
1/3	195	0.044	21.0	294.2	7.2
1/4	505	0.041	21.0	294.2	6.9
1/5	619	0.037	20.0	293.2	6.6
1/6	697	0.045	20.0	293.2	7.2
2/1	3	0.040	20.0	293.2	6.8
2/2	81	0.041	19.0	292.2	6.9
2/3	195	0.042	19.0	292.2	7.0
2/4	505	0.045	20.0	293.2	7.2
2/5	619	0.044	20.0	293.2	7.2
2/6	697	0.039	21.0	294.2	6.8
Average			20.0	293.2	6.9

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -3.7 mm 1025.64 hPa

AECOM

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 27-Mar-	20					
Client: Infrabuild R	ecycling Hexham					
AECOM's Project No:		60493017				
Stack Description No.:	Shredder Stac	:k				
Sample Nozzle No.:	fine7		Sample Nozzle Area (An):	2.87	x 10⁻⁵m²	
Sampling Port No.:	1 to 2		Thimble No:	a5		
Page No:	1 of 1		Blank thimble No:	0		
Leak Check (Pre-Sampl	ing)		Leak Check (Post Sampli	na)		
Meter start: 22251.14	28 Meter finish:	22251.1428	Meter start: 22252.348	0 Meter finish:	22252.3480	
Time start: 10:	32 Time finish:	10:33	Time start: 16:1	8 Time finish:	16:19	
Therefore, leakage rate =	no leak	L/min	Therefore, leakage rate =	no leak	L/min	
(>0.1 l/min. is unacceptat	ble)		(>0.1 l/min. is unacceptable)		
Repeat: Comments:			Repeat: Comments:			

Sampling Record Table

Barometric Pressure:	1026 hPa (s	start);	1026 hPa (finish)
Meter start:	22251.1458	Time start:	10:45
Meter correction factor (Gi	Mf):	0.9990	

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:30	33	13.7	35.0	33.0		Yes
1/2	0:06:45	111	13.7	35.0	33.0		Yes
1/3	0:07:15	225	13.7	37.0	33.0		Yes
1/4	0:07:00	535	13.7	36.0	33.0		Yes
1/5	0:06:45	649	13.7	36.0	33.0		Yes
1/6	0:07:15	727	13.7	36.0	33.0		Yes
2/1	0:07:00	33	13.7	37.0	34.0		Yes
2/2	0:07:00	111	13.7	38.0	34.0		Yes
2/3	0:07:00	225	13.7	39.0	34.0		Yes
2/4	0:07:15	535	13.7	39.0	34.0		Yes
2/5	0:07:15	649	13.7	39.0	34.0		Yes
2/6	0:07:00	727	13.7	39.0	34.0		Yes
A							
Averages				37.2	33.5	no result	
Meter Finish:		22252.3458		Time Finish:		16:15	
Total Condens	ate collected:	-18	ml	Silica gel No(s)	used:	1 Outer	

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 27-Mar-20				
Client: Infrabuild Recycling Hexham				
AECOM's Project No:	60493017			
Stack Description No.: Shredder Stac	>k			
Sample Nozzle No.: s10		Sample Nozzle Area (An):	2.91	x 10 ⁻⁵ m ²
Sampling Port No.: 1 to 2		Thimble No:	a6	
Page No: 1 of 1		Blank thimble No:		
Leak Check (Pre-Sampling)		Leak Check (Post Sampling)		
Meter start: 668.8810 Meter finish:	668.8810	Meter start: 669.9278	Meter finish:	669.9278
Time start: 10:34 Time finish:	10:35	Time start: 16:19	Time finish:	16:20
Therefore, leakage rate = no leak	L/min ⁺	Therefore, leakage rate =	no leak	L/min
(>0.1 l/min. is unacceptable)		(>0.1 l/min. is unacceptable)		
Repeat:		Repeat:		
Comments:		Comments:		

Sampling Record Table

Barometric Pressure:	1026 hPa (start);		1026 hPa (finish)
Meter start:	668.8834	Time start:	10:45
Meter correction factor (GMf) :	1.00	61	

	Stopwatch						
,	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm) -	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:00	33	11.4	30.0	31.0		Yes
1/2	0:14:00	111	12.2	31.0	31.0		Yes
1/3	0:21:00	225	12.9	32.0	31.0		Yes
.1/4	0:28:00	535	12.3	31.0	30.0		Yes
1/5	0:35:00	649	11.9	31.0	30.0		Yes
1/6	0:42:00	727	12.9	31.0	30.0		Yes
2/1	0:49:00	33	12.2	32.0	31.0		Yes
2/2	0:56:00	111	12.4	32.0	31.0		Yes
2/3	1:03:00	225	12.6	33.0	32.0		Yes
2/4	1:10:00	535	12.9	33.0	32.0		Yes
2/5	1:17:00	649	12.9	33.0	32.0		Yes
2/6	1:24:00	727	12.2	33.0	32.0		Yes
-	1						
Averages				31.8	31.1	no result	
Meter Finish:		669.9254		Time Finish:		16:15	
Total Condens	ate collected:	-12	ml	Silica gel No(s)	used:	057	

AECOM

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date: 27-Mar-20)						
Client: Infrabuild Red	ycling Hexham						
AECOM's Project No:		60493017					
Stack Description No .:	Shredder Stack						
Sample Nozzle No .:	g7		Sample Nozzle Are	a (An):	3.73	x 10⁻⁵m²	
Sampling Port No .:	1 to 2		Thimble No:	• •	0		
Page No:	1 of 1		Blank thimble No:				
Leak Check (Pre-Samplin	a)		Leak Check (Post	Sampling	ı)		
Meter start: 306.1792	Meter finish:	306.1792	Meter start:	307.5262	Meter finish:	307.5262	
Time start: 10:35	Time finish:	10:36	Time start:	16:21	Time finish:	16:22	
Therefore, leakage rate =	no leak L/	min	Therefore, leakage	rate =	no leak	L/min	
(>0.1 I/min. is unacceptable	e)		(>0.1 l/min. is unac	ceptable)			
Repeat:			Repeat:				

Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:	1026 hPa (start);	1026 hPa (finish)
Meter start:	306.1816	Time start:	10:45
Meter correction factor (GMf) :		0.9965	

Sampling Time at Form far wall Distance Flowrate (mm) Meter Inite (L/mi) Meter Inite Temp. (°C) Meter Outfet Train Outfet Flowrate Attained 1/1 0.07100 33 14.4 31.0 31.0 Yes 1/2 0.14.00 111 15.5 31.0 30.0 Yes 1/3 0.2100 225 16.4 32.0 30.0 Yes 1/4 0.2800 535 15.7 31.0 30.0 Yes 1/6 0.4200 727 16.4 31.0 30.0 Yes 2/1 0.4900 33 15.5 31.0 31.0 Yes 2/2 0.5600 111 15.8 31.0 31.0 Yes 2/3 1.0300 225 16.0 32.0 31.0 Yes 2/4 1.0000 535 16.4 32.0 31.0 Yes 2/4 1.1000 535 16.4 32.0 31.0 Yes 2/6 1.24		Stopwatch						
Sampling Sampling from far wall Flowrate Meter Inlet Meter Outlet Attained Position No. Position (mm) (Umin) Temp. (°C) Temp. (°C) Temp. (°C) (YN) 1/1 0.07.00 33 14.4 31.0 30.0 Yes 1/2 0.14.00 111 15.5 31.0 30.0 Yes 1/3 0.21:00 225 16.4 32.0 30.0 Yes 1/4 0.28:00 535 15.7 31.0 30.0 Yes 1/6 0.36:00 649 15.0 31.0 30.0 Yes 2/1 0.42:00 727 16.4 31.0 31.0 Yes 2/2 0.56:00 111 15.8 31.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/4 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:0		Time at	Distance	Isokinetic			Impinger	Flowrate
Position No. Position (mm) (L/min) Temp.(°C) Yes 1/2 0.14:00 111 15.5 31.0 30.0 Yes Yes 2/1 0.49:00 33 15.5 31.0 31.0 Yes 2/2 0.56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0	Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
1/1 0:07:00 33 14.4 31.0 31.0 Yes 1/2 0:14:00 111 15.5 31.0 30.0 Yes 1/3 0.21:00 225 16.4 32.0 30.0 Yes 1/4 0.28:00 535 15.7 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/4 1:00:0 535 16.4 32.0 31.0 Yes 2/5 1:7:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0	Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/2 0:14:00 111 15.5 31.0 30.0 Yes 1/3 0:21:00 225 16.4 32.0 30.0 Yes 1/4 0:28:00 535 15.7 31.0 30.0 Yes 1/5 0:35:00 649 15.0 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:36:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 1.0 <td>1/1</td> <td>0:07:00</td> <td>33</td> <td>14.4</td> <td>31.0</td> <td>31.0</td> <td></td> <td>Yes</td>	1/1	0:07:00	33	14.4	31.0	31.0		Yes
1/3 0:21:00 225 16.4 32.0 30.0 Yes 1/4 0:28:00 535 15.7 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 1 1:24:00 727 15.4 32.0 10.1 10.1 1 1:24:00 1:24:00 10.1 10.1 10.1 </td <td>1/2</td> <td>0:14:00</td> <td>111</td> <td>15.5</td> <td>31.0</td> <td>30.0</td> <td></td> <td>Yes</td>	1/2	0:14:00	111	15.5	31.0	30.0		Yes
114 0:28:00 535 15.7 31.0 30.0 Yes 115 0:35:00 649 15.0 31.0 30.0 Yes 116 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/4 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>1/3</td> <td>0:21:00</td> <td>225</td> <td>16.4</td> <td>32.0</td> <td>30.0</td> <td></td> <td>Yes</td>	1/3	0:21:00	225	16.4	32.0	30.0		Yes
1/5 0:33:00 649 15.0 31.0 30.0 Yes 1/6 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes	1/4	0:28:00	535	15.7	31.0	30.0		Yes
1/6 0:42:00 727 16.4 31.0 30.0 Yes 2/1 0:49:00 33 15.5 31.0 31.0 Yes 2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes	1/5	0:35:00	649	15.0	31.0	30.0		Yes
2/1 0.49:00 33 15.5 31.0 31.0 Yes 2/2 0.56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes	1/6	0:42:00	727	16.4	31.0	30.0		Yes
2/1 0.49:00 33 15.5 31.0 31.0 Yes 2/2 0.56:00 111 15.8 31.0 31.0 Yes 2/3 1.03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 10 10 2/7 1:54 102 102 102 102								
2/2 0:56:00 111 15.8 31.0 31.0 Yes 2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 102 102 102 102	2/1	0:49:00	33	15.5	31.0	31.0		Yes
2/3 1:03:00 225 16.0 32.0 31.0 Yes 2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1 1 1 1 1 1 2/6 1 1 1 1 1 1 <	2/2	0:56:00	111	15.8	31.0	31.0		Yes
2/4 1:10:00 535 16.4 32.0 31.0 Yes 2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 2/6 1:24:00 10 10 10 10 101 101 101 101 101	2/3	1:03:00	225	16.0	32.0	31.0		Yes
2/5 1:17:00 649 16.4 32.0 31.0 Yes 2/6 1:24:00 727 15.4 32.0 31.0 Yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>2/4</td> <td>1:10:00</td> <td>535</td> <td>16.4</td> <td>32.0</td> <td>31.0</td> <td></td> <td>Yes</td>	2/4	1:10:00	535	16.4	32.0	31.0		Yes
2/6 1:24:00 727 15.4 32.0 31.0 Yes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2/5	1:17:00	649	16.4	32.0	31.0		Yes
Image: Second	2/6	1:24:00	727	15.4	32.0	31.0		Yes
Image: Subscription of the su								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 10.6 no result								
Image: Second state collected; Stilling on level Stilling on level 16:15								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 16:15								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 102								
Averages 307.5232 Time Finish: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mo(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Siling cel No(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mr(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mr(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mo(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mo(s) used: 102								
Averages 31.4 30.6 no result Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel Mo(s) used: 102				+				
Meter Finish: 307.5232 Time Finish: 16:15 Total Condensate collected: -8 ml Silica cel No(s) used: 102	Averages				31.4	30.6	no result	
Total Condensate collected: -8 ml Silica del Mo(s) used: 102	Meter Finish:		307.5232		Time Finish:		16:15	
	Total Condens	ate collected:	-8	ml	Silica del No(s)	used:	102	

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:27-Mar-20Client:Infrabuild Recycling HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

Time ·	16:19	Barometric P	ressure :	1026	hPa
Page No. :	1 of 1	Pitot Correction Factor		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ansity:	1 20	ka/m ³
Bitot Tubo Typo :	6		mony.	1.20	(0 °C Mot 1 Atm)
Filot Tube Type .	3	Mox			(U C, Wei, TAIII)
	Distance	Difformatical	5		
Sampling Position	Distance	Direcentia	Max Temp.	Max Temp. (Ts)	Corrected Velocity
No.		Pressure	°C	K 1	(Vs) m/s
	(mm)	ΔP, KIIO			、 <i>'</i>
1/1	2	Pascals	04.0	007.0	
1/1	3	0.030	24.0	297.2	6.0
1/2	105	0.035	24.0	297.2	6.5
1/3	195	0.040	23.0	296.2	6.9
1/4	505	0.045	23.0	296.2	7.3
1/5	619	0.041	23.0	296.2	7.0
1/6	697	0.035	24.0	297.2	6.5
0//		0.000			
2/1	3	0.033	23.0	296.2	6.3
2/2	81	0.045	23.0	296.2	7.3
2/3	195	0.046	24.0	297.2	7.4
2/4	505	0.041	24.0	297.2	7.0
2/5	619	0.040	23.0	296.2	6,9
2/6	697	0.035	22.0	295.2	6.4
		1.1.1			
Average			23.2	206.5	69
			20.0	290.5	0.0

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -3 mm 1025.71 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:	27-Mar-20		Client:	Infrabuild Recy	cling Hexham
AECOM's Project	No:	60493017	Stack/Duct Des	scription:	Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oxid	isable Mercury F	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (lf Required) (5C)
Antimony	< 0.00083	<0.0019	<u> </u>		
Arsenic	<0.00062	0.00005			
Beryllium	0.00001	< 0.0001			
Cadmium	0.00044	0.00015			
Chromium	0.0014	0.0008			
Cobalt	0.00004	<0.0001			
Copper	0.00279	0.0018			
Lead	0.00202	0.017			
Magnesium	0.101	0.0169			
Manganese	0.0115	0.0049			
Mercury	<0.0001	< 0.0001	< 0.0001	0.000151	0.00005
Nickel	0.00261	0.0005			
Selenium	< 0.0004	< 0.0005			
Thallium	<0.0001	<0.0001			
Tin	< 0.00023	0.0003			
Vanadium	<0.00025	<0.00025			
Zinc	<7.9015	0.068			

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date:	27-Mar-20			Client:	Infrabuild Recy	cling Hexham			
AECOM's Proj	ect No:		60493017	Stack/Duct De	scription:	Shredder Stack			
Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	< 0.00083	< 0.000683	< 0.0019	< 0.00156			< 0.0001	< 0.0000823	< 0.000237
Arsenic	<0.00062	<0.00051	0.00005	0.0000411			0.00005	0.0000411	0.000118
Beryllium	0.00001	0.00000823	< 0.0001	<0.0000823			0.00001	0.00000823	0.0000237
Cadmium	0.00044	0.000362	0.00015	0.000123			0.00059	0.000485	0.00139
Chromium	0.0014	0.00115	0.0008	0.000658			0.0022	0.00181	0.00521
Cobalt	0.00004	0.0000329	< 0.0001	<0.0000823			0.00004	0.0000329	0.0000946
Copper	0.00279	0.00229	0.0018	0.00148			0.0046	0.00378	0.0109
Lead	0.00202	0.00166	0.017	0.014	************		0.019	0.0156	0.0449
Magnesium	0.101	0.0831	0.0169	0.0139			0.12	0.0987	0.284
Manganese	0.0115	0.00946	0.0049	0.00403			0.016	0.0132	0.038
Mercury	< 0.0001	< 0.0000823	< 0.0001	<0.0000823	0.000201	0.000165	0.0002	0.000165	0.000475
Nickel	0.00261	0.00215	0.0005	0.000411			0.0031	0.00255	0.00733
Selenium	< 0.0004	<0.000329	< 0.0005	< 0.000411			< 0.0001	< 0.0000823	< 0.000237
Thallium	< 0.0001	< 0.0000823	< 0.0001	< 0.0000823			< 0.0001	< 0.0000823	< 0.000237
Tin	< 0.00023	< 0.000189	0.0003	0.000247			0.0003	0.000247	0.00071
Vanadium	<0.00025	< 0.000206	< 0.00025	<0.000206			< 0.0001	< 0.0000823	< 0.000237
Zinc	<7.9015	<6.5	0.068	0.0559			0.068	0.0559	0.161
Total Hazardous Metals*	0.018	0.0148	0.0234	0.0193	0.000201	0.000165	0.042	0.034	0.0982
Total Metals	0.122	0.1	0.11	0.0908			0.234	0.193	0.554

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10) (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 27-Mar-20 AECOM's Project No:	60493017	Client: Stack/Duct	Infrabuild Recycles Description:	cling Hexham Shredder Stack
(A) Sample gas volume at stand	ard conditions			
Metered volume (MV_3): Average gas meter temp. ($T_{M,2}$):	1.1988 35.3	m³ ℃	Average barom pressure (P _{BARC}	etric b) °1026 hPa
	308.5	к	Average pressu meter (P _{M,2})	ure at 1026.00 hPa
Sample gas volume (MV ₄); (0°C, gas, 1 atm pressure):	dry 1.0750	m³		
(B) PM10 concentration at stand Blank thimble No.: Thimble No. used: a5 Final PM10 Weight (Mp1): PM10 Concentration (C1):	ard conditions 0 0.00430	g =M _{p1} /MV ₄ =	Blank weight: PM10 Weight	g 0.0043 g 0.004 g/m ³ (0°C, dry gas, 1atm pressure)
CO ₂ Basis 12 % Average CO ₂ %:	0.0 %	;and C ₂ =		⁴ mg/m ³ (0°C, dry gas, 1atm pressure)
Therefore, C _c :	= C _a x 12/0	CO ₂ % =	0.004	g/m ³ (0°C, dry gas, 1atm pressure, 12% CO ₂)
		;and C _{c1} =	4	mg/m ³ (0°C, dry gas, 1atm pressure, 12% CO ₂)
O ₂ Basis % Average O ₂ %:	20.9 %			
Therefore, C_b : = $C_a x$	(21 - O _{2ref} %)/(21 - C) _{2mea} %)	#VALUE!	g/m ³ (0°C, dry gas, 1atm pressure, % O ₂)
		;and C _{b1} =	#VALUE!	mg/m ³ (0°C, dry gas, 1atm pressure, % O_2)
(C) Moisture content Silica Gel Number: 1 Oute	۶r			
$V_v =$ 17.1 g (from Volume of Water Vapour Condex Volume of Water Vapour Condex Therefore, $B_{ws} =$	n laboratory report) nsed (V _{wc(std)}) = nsed (V _{wsg(std)}) = <u>(V_{wc(std)}+V_{wsg(std)}+V_m (V_{wc(std)}+V_{wsg(std)}+V_m</u>	-0.0240 0.0228) n(std))	V _w =	-18 m∟ (=grams) (recorded on Laboratory Form 108)
B _{ws} =	-0.11 %			

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sa	ampling:	1.29 kg/m ³ (from Laboratory Form 107)
(ii) Re-calculated gas den content in (c):	sity based on moisture	1.28 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)
(iii) Gas density at stack o	conditions =	(ii) x <u>(273.2)</u> x <u>(Ps</u> (273.2+Ts) (1013.25
	=	1.200 kg/m ³ (stack conditions, wet)
(E) Gas Velocities		
(i) Average of pre-samplin	ng velocities:	6.91 m/s
(ii) Average of post-samp	ling velocities:	6.79 m/s
(iii) Average of while-sam	pling velocities:	N/A m/s
(iv) Overall average of pressampling velocities (Vs): (Note : (Vs) is from all indiand (ii) alone.)	e-sampling and post- ividual data, not from (i)	6.85 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)
(F) Volumetric Flowrates	(Reference Method US-EPA	Method 2, NSW-EPA TM-2)
Qstack =	Vs x A =	3.11 m ³ /s (stack conditions)
Qstd = Qstack x	<u>Ps</u> x <u>(Tstd)</u> x <u>(</u> (Pstd) (Ts)	<u>(100 - B_w)</u> 100
Qstd = 2.9	m³/s (0°C, dry gas, 1 atm p	ressure)

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.012	g/s (0°C, dry gas, 1 atm pressure		
	=	12	mg/s (0°C, dry gas, 1 atm pressure)	

.

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 27-Mar-20 AECOM's Project No:	60493017	Client: Stack/Duc	Infrabuild Recy Description:	cling Hexhar Shredder S	m tack
(A) Sample gas volume at standard cond	itions				
Metered volume (MV ₃): Average gas meter temp. ($T_{M,2}$):	1.0484 31.5	m³ °C	Average baron pressure (P _{BAR}	etric o)	1026 hPa
	304.7	к	Average press (P _{M,2})	ure at meter	1026.00 hPa
Sample gas volume (MV ₄); (0°C, dry gas, 1 atm pressure):	0.9518	m ³			
(B) Total Particulate concentration at stan Blank thimble No.: Thimble No. used: a6 Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):	idard condit 0.02550	g g	Blank weight: Total Particulat	e Weight	g 0.0255 g g/m ³ (0°C, dry gas
Total Particulate Concentration (CT):		-101 _{p1} /101 v ₄ -		0.027	1atm pressure)
CO ₂ Basis 12 % Average CO ₂ %: 0.0	%	;and C ₂ =		27	mg/m ³ (0⁰C, dry gas, 1atm pressure)
Therefore, C _c :	= C _a x 12/0	CO ₂ % =	0.027	g/m ³ (0°C, c pressure, 12	dry gas, 1atm 2% CO ₂)
		;and C _{c1} =	27	mg/m ³ (0°C pressure, 12	, dry gas, 1atm 2% CO ₂)
O2 Basis 7 % Average O2%: 20.9	%				
Therefore, C_b : = $C_a \times (21 - O_{2r})$	_{ef} %)/(21 - C	o _{2mea} %)	3.8	g/m ³ (0°C, c 7%	dry gas, 1atm pressure, O ₂)
		;and C _{b1} =	3800	mg/m ³ (0°C 7%	, dry gas, 1atm pressure, O ₂)
(C) Moisture content Silica Gel Number: 057					
$V_v =$ 13.9 g (from laborate Volume of Water Vapour Condensed (V_{wir} Volume of Water Vapour Condensed (V_{wir} Therefore $B_{wir} =$ (V_{wir}	ory report) _{c(std)}) = _{sg(std)}) =	-0.0160 0.0186	V _w =	-12	(recorded on Laboratory Form 108)
(V _{wc(std)} +	sid) <u>vwsg(std)</u> ∙V _{wsg(std)} +V _n	n(std))			
B _{ws} = 0.27	%				

Q4AN(EV)-332-FM31

ANZ Emission Measurement Calculations Spreadsheet

S	ТАСК	ANALYSIS	- FINAL	CALCULATIONS	CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sa	ampling:	1.29 kg/m ³ (from Laboratory Form 107)			
(ii) Re-calculated gas dena content in (c):	sity based on moisture	1.29 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)			
(iii) Gas density at stack c	onditions =	(ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)			
	=	1.210 kg/m ³ (stack conditions, wet)			
(E) Gas Velocities					
(i) Average of pre-samplin	ng velocities:	6.91 m/s			
(ii) Average of post-sampl	ing velocities:	6.79 m/s			
(iii) Average of while-sam	pling velocities:	N/A m/s			
(iv) Overall average of presampling velocities (Vs): (Note : (Vs) is from all indi- and (ii) alone.)	e-sampling and post- vidual data, not from (i)	6.85 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)			
(F) Volumetric Flowrates (Reference Method US-EPA	Method 2, NSW-EPA TM-2)			
Qstack =	Vs x A =	3.11 m ³ /s (stack conditions)			
Qstd = Qstack x	<u>Ps</u> x <u>(Tstd)</u> x <u>(</u> (Pstd) (Ts)	100 - B _w } 100			
Qstd = 2.9	m ³ /s (0°C, dry gas, 1 atm pre	essure)			
(G) Mass Emission Rate					

Rm =	C _{1a} x Qstd =	0.078	g/s (0°C, dry gas, 1 atm pressure)
	=	78	mg/s (0°C, dry gas, 1 atm pressure)

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 27-Mar-20 Client: Infrabuild Recycling Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack (A) Sample gas volume at standard conditions 1.3369 m³ Average barometric Metered volume (MV₃): pressure (PBARO) 31.0 °C Average gas meter temp. (T_{M.2}): 1026 hPa Average pressure at meter 304.2 K 1026.00 hPa $(P_{M,2})$ Sample gas volume (MV₄); (0°C, dry gas, 1.2158 m³ 1 atm pressure): (B) Metals concentration at standard conditions Blank thimble No.: Blank weight: g 0.0000415 g Thimble No. used: 0 Metals Weight 0.00004 g Final Metals Weight (Mp1): 0.000034 g/m³ (0°C, dry gas, Metals Concentration (C1): $=M_{n1}/MV_4=$ 1atm pressure) ; and $C_2 =$ 0.034 mg/m³ (0°C, dry gas, 1atm pressure) CO₂ Basis 12 % Average CO₂%: 0.0 % 0.000034 g/m³ (0°C, dry gas, 1atm pressure. = C_a x 12/CO₂% = Therefore, C_c: 12% CO2) 0.034 mg/m³ (0°C, dry gas, 1atm ;and $C_{c1} =$ pressure, 12% CO₂) O₂ Basis 7 % Average O₂%: 20.9 % Therefore, C_b: =C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%) 0.0048 g/m³ (0°C, dry gas, 1atm pressure, 7% O₂) ;and C_{b1} = 4.8 mg/m³ (0°C, dry gas, 1atm pressure, O₂) 7% (C) Moisture content Silica Gel Number: 102 V_v = 20:g (from laboratory report) $V_w =$ -8 mL (=grams) (recorded on Volume of Water Vapour Condensed (Vwc(std)) = -0.0107 Laboratory Form 108) Volume of Water Vapour Condensed (V_{wso(std)}) = 0.0267 Therefore, B_{ws} = (Vwc(std)+Vwsa(std)) (V_{wc(std)}+V_{wsg(std)}+V_{m(std)}) 1.30 % B_{ws} =

Q4AN(EV)-332-FM31

ANZ Emission Measurement Calculations Spreadsheet

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and	Density (Re-calculation)				
(i) Initial gas density for sa	ampling:	1.29 kg/m ³ (from Lab	oratory Form	107)	
(ii) Re-calculated gas den content in (c):	sity based on moisture	1.29 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)			
(iii) Gas density at stack o	conditions =	(ii) x	<u>(273.2)</u> x (273.2+Ts)	<u>(Ps</u>) (1013.25)	
	=	1.210 kg/m ³ (stack cor	nditions, wet)		
(E) Gas Velocities					
(i) Average of pre-samplin	ng velocities:	6.91 m/s			
(ii) Average of post-samp	ling velocities:	6.79 m/s			
(iii) Average of while-sam	pling velocities:	N/A m/s			
(iv) Overall average of pro- sampling velocities (Vs): (Note: (Vs) is from all ind and (ii) alone.)	e -sampling and post- ividual data, not from (i)	6.85 m/s (stack cond N/A m/s (stack cond	litions, wet) litions, wet)		
(F) Volumetric Flowrates	(Reference Method US-EPA Met	hod 2, NSW-EPA TM-:	2)		
Qstack =	Vs x A =	3.11 m ³ /s (stack cond	ditions)		

Qstd =	Qstack x	<u>Ps</u> x (Pstd)	<u>(Tstd)</u> x ((Ts)	(<u>100 - B_</u>) 100
Qstd =	2.9	m³/s (0°C, dry	gas, 1 atm p	ressure)

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.000098	g/s (0°C, dry gas, 1 atm pressure)
	=	0.098	mg/s (0°C, dry gas, 1 atm pressure)

AECOM

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK							
TAZARDOUS SUBSTANCES (ME	(ALS)						
Sampling Conditions:							
Stack internal diameter at test location	760 mm						
Stack gas temperature (average)	21.7 °C	294.9 K					
Stack pressure (average)	1026 hPa						
Stack gas velocity (average, stack conditions)	6.9 m/s						
Stack gas flowrate (stack conditions)	3.1 m ³ /s						
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.9 m ³ /s						
Fine Particulate (PM10) Testing							
Test Period*3	10:45	- 16:15					
Fine Particulate (PM10) Mass	4.3 mg						
Gas Volume Sampled	1.07 m ³						
Fine Particulate (PM10) Emission*1	4.0 mg/m ³						
Fine Particulate (PM10) Mass Emission Rate*2	12 mg/s						
Regulatory Limit	N/A						
Total Particulate Testing							
Test Period*3	10:45	- 16:15					
Total Particulate Mass	25.5 mg						
Gas Volume Sampled	0.952 m ³						
Total Particulate Emission*1	27 mg/m ³						
Total Particulate Mass Emission Rate*2	78 mg/s						
Regulatory Limit	100 mg/m ³						
Hazardous Substances (Metals) Testing							
Test Period*3	10:45	- 16:15					
Hazardous Substances (Metals) Mass	0.0415 mg						
Gas Volume Sampled	1.22 m ³						
Hazardous Substances (Metals) Emission*1	0.034 mg/m ³	·					
Hazardous Substances (Metals) Mass Emission Rate*2	0.098 mg/s						
Regulatory Limit	N/A						
Moisture Content (%)	0.8						
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³						
Dry Molecular Weight	28.8 g/g-mole						

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

*3 Sample collected over two periods (10:45 - 11:44 and 15:50 - 16:15) due to operational requirements

.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017/5.1	Report :	21319-0-М	Page 1 of 1
Description :	Stack Emission Samples Received: 02-Apr-20	<u>Date :</u>	07-Apr-20	
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u>	FILE	
Jar ID	Moisture (g)			
057		13.9		
1 Outer		17.1		
102		20.0		

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing Reported By: M. Canfleu

Note : Sampled by Client - Analysed as Received

Michael Campbell - Director

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017/5.1	Report :	21319	-0-P Page 1 of	1
Description :	Stack Emission Samples Received: 02-Apr-20	<u>Date :</u>	07-Ap	r-20	
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u>	FILE		
Thimble ID		Volume (mL)	Total Particulate Matter (g)	
A5	Thimble	-		0.0043	
A6	Thimble	-		0.0255	

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Reported By:

leu Can

Michael Campbell - Director Determined in Accordance With:

Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2 Refer Form F422 - Measurement Uncertainty

Note : Sampled by Client - Analysed as Received

Contact	Cye Buckland	Manager	Adam Atkinson
Client	AECOM Australia Pty Ltd	Laboratory	SGS Melbourne EH&S
Address	17 Warabrook Boulevard Warabrook SYDNEY NSW 2304	Address	10/585 Blackburn Road Notting Hill Victoria 3168
Telephone	02 8295 3600	Telephone	+61395743200
Facsimile	02 8934 0001	Facsimile	+61395743399
Email	cye.buckland@aecom.com	Email	Au.SampleReceipt.Melbourne@sgs.com
Project	60493017/5.1	SGS Reference	ME314465 R0
Order Number	60493017/5.1	Date Received	02 Apr 2020
Samples	12	Date Reported	07 Apr 2020

COMMENTS _

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES .

Adam Atkinson Business Manager

2kay

Ryan ZHANG Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety Bldg

Bldg 10, 585 Blackburn Rd

Notting Hill VIC 3168 Australia

t +61 3 9574 3200 a f +61 3 9574 3399

www.sgs.com.au

ME314465 R0

		Sample Numbe Sample Matri Sample Dat Sample Nam	rr ME314465.001 x Filter e 27 Mar 2020 e Metals 1	ME314465.002 Impinger 27 Mar 2020 Metals 3	ME314465.003 Impinger 27 Mar 2020 Metals 4	ME314465.004 Impinger 27 Mar 2020 Metals 5A
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA	M29 Method: EF	A29_FILT	Tested: 3/4/2020			
Sb	µg total	0.05	0.13	-	-	-
As	µg total	0.05	0.59	-	-	-
Ве	µg total	0.05	0.06	-	-	-
Cd	µg total	0.05	0.49	-	-	-
Cr	µg total	0.05	3.5	-	-	-
Co	µg total	0.05	0.09	-	-	-
Cu	µg total	0.05	3.1	-	-	-
Pb	µg total	0.05	2.5	-	-	-
Mg	µg total	0.05	410	-	-	-
Mn	µg total	0.05	12	-	-	-
Hg	µg total	0.05	<0.05	-	-	-
Ni	µg total	0.05	2.3	-	-	-
Se	µg total	0.05	0.22	-	-	-
ТІ	µg total	0.05	<0.05	-	-	-
Sn	µg total	0.05	0.18	-	-	-
V	µg total	0.25	<0.25	-	-	-
Zn	µg total	0.05	6100	-	-	-

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 6/4/2020

Sb	µg total	0.1	-	0.2	1.1	-
As	µg total	0.1	-	<0.1	0.1	-
Be	µg total	0.1	-	<0.1	<0.1	-
Cd	µg total	0.1	-	<0.1	0.2	-
Cr	µg total	0.1	-	0.2	1.2	-
Co	µg total	0.1	-	<0.1	<0.1	-
Cu	µg total	0.1	-	0.9	3.0	-
Рь	µg total	0.1	-	0.2	17	-
Mg	µg total	0.1	-	3.0	21	-
Mn	µg total	0.1	-	1.8	5.3	-
Hg	µg total	0.1	-	<0.1	<0.1	<0.1
Ni	µg total	0.1	-	0.9	0.7	-
Se	µg total	0.1	-	0.1	0.5	-
ТІ	µg total	0.1	-	<0.1	<0.1	-
Sn	µg total	0.1	-	<0.1	0.7	-
V	µg total	0.1	-	<0.1	<0.1	-
Zn	µg total	0.1	-	3.0	70	-
Sample Volume*	mL	-	-	98	300	98

ME314465 R0

	s	ample Numbe Sample Matri Sample Dat Sample Nam	er ME314465.005 ix KmnO4 ee 27 Mar 2020 ee Metals 5B	ME314465.006 Impinger 27 Mar 2020 Metals 5C	ME314465.007 Impinger 27 Mar 2020 Metals 8A	ME314465.008 Impinger 27 Mar 2020 Metals 8B
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA	M29 Method: EP/	29_FILT	Tested: 6/4/2020			
Sb	µg total	0.05	-	-	-	-
As	µg total	0.05	-	-	-	-
Ве	µg total	0.05	-	-	-	-
Cd	µg total	0.05	-	-	-	-
Cr	µg total	0.05	-	-	-	-
Co	µg total	0.05	-	-	-	-
Cu	µg total	0.05	-	-	-	-
Pb	µg total	0.05	-	-	-	-
Mg	µg total	0.05	-	-	-	-
Mn	µg total	0.05	-	-	-	-
Hg	µg total	0.05	-	-	-	-
Ni	µg total	0.05	-	-	-	-
Se	µg total	0.05	-	-	-	-
п	µg total	0.05	-	-	-	-
Sn	µg total	0.05	-	-	-	-
V	µg total	0.25	-	-	-	-
Zn	µg total	0.05	-	-	-	-

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 3/4/2020

Sb	µg total	0.1	-	-	0.2	-
As	µg total	0.1	-	-	<0.1	-
Ве	µg total	0.1	-	-	<0.1	-
Cd	µg total	0.1	-	-	<0.1	-
Cr	µg total	0.1	-	-	<0.1	-
Co	µg total	0.1	-	-	<0.1	-
Cu	µg total	0.1	-	-	0.7	-
Pb	µg total	0.1	-	-	<0.1	-
Mg	µg total	0.1	-	-	2.1	-
Mn	µg total	0.1	-	-	0.3	-
Hg	µg total	0.1	0.2	0.1	<0.1	<0.1
Ni	µg total	0.1	-	-	0.1	-
Se	µg total	0.1	-	-	0.2	-
ТІ	µg total	0.1	-	-	<0.1	-
Sn	µg total	0.1	-	-	<0.1	-
V	µg total	0.1	-	-	<0.1	-
Zn	µg total	0.1	-	-	1.5	-
Sample Volume*	mL	-	390	250	310	100

ME314465 R0

		Sample Numbe Sample Matri Sample Dat Sample Nam	er ME314465.009 x Impinger e 27 Mar 2020 e Metals 9	ME314465.010 KmnO4 27 Mar 2020 Metals 10	ME314465.011 Impinger 27 Mar 2020 Metals 11	ME314465.012 Filter 27 Mar 2020 Metals 12
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA	M29 Method: E	PA29_FILT	Tested: 6/4/2020			
Sb	µg total	0.05	-	-	-	0.63
As	µg total	0.05	-	-	-	0.62
Ве	µg total	0.05	-	-	-	<0.05
Cd	µg total	0.05	-	-	-	<0.05
Cr	µg total	0.05	-	-	-	2.3
Co	µg total	0.05	-	-	-	<0.05
Cu	µg total	0.05	-	-	-	0.51
Pb	µg total	0.05	-	-	-	0.68
Mg	µg total	0.05	-	-	-	310
Mn	µg total	0.05	-	-	-	2.0
Hg	µg total	0.05	-	-	-	<0.05
Ni	µg total	0.05	-	-	-	0.49
Se	µg total	0.05	-	-	-	0.20
ТІ	µg total	0.05	-	-	-	<0.05
Sn	µg total	0.05	-	-	-	0.23
V	µg total	0.25	-	-	-	<0.25
Zn	µg total	0.05	-	-	-	7900

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP Tested: 3/4/2020

Sb	µg total	0.1	1.7	-	-	-
As	µg total	0.1	<0.1	-	-	-
Ве	µg total	0.1	<0.1	-	-	-
Cd	µg total	0.1	<0.1	-	-	-
Cr	µg total	0.1	0.4	-	-	-
Co	µg total	0.1	<0.1	-	-	-
Cu	µg total	0.1	0.5	-	-	-
Pb	µg total	0.1	<0.1	-	-	-
Mg	µg total	0.1	2.0	-	-	-
Mn	µg total	0.1	0.1	-	-	-
Hg	µg total	0.1	<0.1	<0.1	<0.1	-
Ni	µg total	0.1	0.1	-	-	-
Se	µg total	0.1	0.3	-	-	-
ТІ	µg total	0.1	<0.1	-	-	-
Sn	µg total	0.1	0.4	-	-	-
V	µg total	0.1	<0.1	-	-	-
Zn	µg total	0.1	0.5	-	-	-
Sample Volume*	mL	-	210	100	250	-

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS prike recoveries are ecoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Sb	LB032292	µg total	0.05	<0.05	104%
As	LB032292	µg total	0.05	<0.05	106%
Ве	LB032292	µg total	0.05	<0.05	106%
Cd	LB032292	µg total	0.05	<0.05	101%
Cr	LB032292	µg total	0.05	<0.05	102%
Co	LB032292	µg total	0.05	<0.05	106%
Cu	LB032292	µg total	0.05	<0.05	107%
Pb	LB032292	µg total	0.05	<0.05	102%
Mg	LB032292	µg total	0.05	<0.05	105%
Mn	LB032292	µg total	0.05	<0.05	102%
Hg	LB032292	µg total	0.05	<0.05	104%
Ni	LB032292	µg total	0.05	<0.05	103%
Se	LB032292	µg total	0.05	<0.05	106%
п	LB032292	µg total	0.05	<0.05	106%
Sn	LB032292	µg total	0.05	<0.05	101%
V	LB032292	µg total	0.25	<0.25	101%
Zn	LB032292	µg total	0.05	<0.05	100%

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Sb	LB032293	µg total	0.1	<0.1	106%
As	LB032293	µg total	0.1	<0.1	105%
Ве	LB032293	µg total	0.1	<0.1	100%
Cd	LB032293	µg total	0.1	<0.1	100%
Cr	LB032293	µg total	0.1	<0.1	100%
Co	LB032293	µg total	0.1	<0.1	106%
Cu	LB032293	µg total	0.1	<0.1	105%
Pb	LB032293	µg total	0.1	<0.1	102%
Mg	LB032293	µg total	0.1	<0.1	103%
Mn	LB032293	µg total	0.1	<0.1	99%
Hg	LB032293	µg total	0.1	<0.1	
Ni	LB032293	µg total	0.1	<0.1	100%
Se	LB032293	µg total	0.1	<0.1	108%
п	LB032293	µg total	0.1	<0.1	106%
Sn	LB032293	µg total	0.1	<0.1	101%
V	LB032293	µg total	0.1	<0.1	101%
Zn	LB032293	µg total	0.1	<0.1	97%
Sample Volume*	LB032293	mL	-	1.0	NA

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
EPA 29	Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A. . Filters are digested using the appropriate sample preparation methods. A representative sample is extracted in concentrated acid using microwave heating by the CEM -MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.
EPA29	This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29, USEPA 3015A and USEPA 6020A. Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES _

IS	Insufficient sample for analysis.	LOR	Limit of Reporting	
LNR	Sample listed, but not received.	↑↓	Raised or Lowered Limit of Reporting	
*	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance	
	performance of this service.	QFL	QC result is below the lower tolerance	
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte	
		NVL	Not Validated	

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

End of Report

17 Warabrook Boulevard, Warabrook, NSW 2304 PO Box 73 Hunter Region MC NSW 2310 T +61 2 4911 4900 F +61 2 4911 4999

www.aecom.com