

1st Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

1st Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

20-Apr-2018

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 1st Quarter Emissions Testing Report 2018

Ref 60493017

Date 20-Apr-2018

Prepared by Dylan Turnbull

Reviewed by Cye Buckland AECOM Approved Signatory

Bullard

Revision History

Dov	Davisian Data	Deteile	Authorised		
Rev	Revision Date	Details	Name/Position	Signature	
0	20-Apr-18	Report for Issue	Chad Whitburn Associate Director - Compliance Services	allet	

Table of Contents

1.0	Introduct	tion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo	logy	3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Sampling	g Location	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Appendi	ix A		
	Field Sh	eets (17 pages)	Α
Appendi	ix B		
	Laborato	ory Results (8 pages)	В
List of 1	Tables		
Table 1		Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 1		AECOM NATA Endorsed Methods	2 3
Table 3		Sampling Location Summary	4
Table 4		Shredder Baghouse Emission Results Summary, 28 March 2018	5
Table 5		Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	J
i abic 3		Results, 28 March 2018	6
Table 6		Hazardous Substances (Metals) Elemental Analysis Results, 28 March 2018	7

1

1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 28 March 2018 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 15962-0-M & 15962-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME306190 R0:
 - Hazardous Substances (Metals).

Revision 0 – 20-Apr-2018 Prepared for – OneSteel Recycling Pty Ltd – ABN: 28 002 707 262

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1 (NSW EPA TM-1)	USEPA (2000) Method 1	Selection of sampling positions
AS4323.2 (NSW EPA TM-15)	USEPA (2000) Method 5 under approved circumstances	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201 or 201A (as appropriate)	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 28 March 2018.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 28 March 2018

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	36	100
Fine Particulate (PM ₁₀) (mg/m ³)	2.4	NA
Lead (mg/m³)	0.0064	5.0
Mercury (mg/m ³)	<0.000082	1.0
Total Hazardous Substances (Metals) (mg/m³)	0.048	NA

Results from testing conducted on EPL Point 1 on 28 March 2018 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 28 March 2018

Sampling Conditions:				
Stack internal diameter at test location	760	mm		
Stack gas temperature (average)	30.0	°C	303.2	K
Stack pressure (average)	1017	hPa		
Stack gas velocity (average, stack conditions)	6.8	m/s		
Stack gas flowrate (stack conditions)	3.1	m³/s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.7	m³/s		
Fine Particulate (PM ₁₀) Testing				
Test Period	10:01	-	11:31	
Fine Particulate (PM ₁₀) Mass	2.6	mg		
Gas Volume Sampled	1.1	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	2.4	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	6.6	mg/s		
Regulatory Limit	NA			
Total Particulate Testing				
Test Period	10:01	-	11:31	
Total Particulate Mass	36.6	mg		
Gas Volume Sampled	1.0	m^3		
Total Particulate Emission*1	36	mg/m ³		
Total Particulate Mass Emission Rate*2	98	mg/s		
Regulatory Limit	100	mg/m³		
Hazardous Substances (Metals) Testing				
Test Period	10:01	-	11:31	
Hazardous Substances (Metals) Mass	0.058	mg		
Gas Volume Sampled	1.2	m^3		
Hazardous Substances (Metals) Emission*1	0.048	mg/m³		
Hazardous Substances (Metals) Mass Emission Rate*2	0.13	mg/s		
Regulatory Limit	NA			
Moisture Content (%)	2.0			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas
*2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture
content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 28 March 2018

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00025	0.00021	0.000053	0.000044			0.00030	0.00025	0.00069
Arsenic	0.00033	0.00027	<0.0001	<0.000082			0.00033	0.00027	0.00074
Beryllium	<0.0001	<0.000082	<0.0001	<0.000082			<0.0001	<0.000082	<0.00023
Cadmium	0.034	0.028	0.00015	0.00012			0.034	0.028	0.077
Chromium	0.0029	0.0024	0.0015	0.0012			0.0044	0.0036	0.0099
Cobalt	0.00007	0.000058	<0.0001	<0.000082			0.00007	0.000058	0.00016
Copper	0.0050	0.0041	<0.0001	<0.000082			0.0050	0.0041	0.011
Lead	0.0068	0.0056	0.00091	0.00075			0.0080	0.0064	0.018
Magnesium	0.065	0.053	0.019	0.016			0.084	0.069	0.19
Manganese	0.0065	0.0053	<0.0099	<0.0081			0.0065	0.0053	0.015
Mercury	<0.0001	<0.000082	<0.0001	<0.000082	<0.0001	<0.000082	<0.0001	<0.000082	<0.00023
Nickel	0.0016	0.0013	0.0027	0.0022			0.0043	0.0035	0.0097
Selenium	<0.0001	<0.000082	<0.0001	<0.000082			<0.0001	<0.000082	<0.00023
Thallium	<0.0001	<0.000082	<0.0001	<0.000082			<0.0001	<0.000082	<0.00023
Tin	0.00037	0.00030	<0.0087	<0.0071			0.00037	0.00030	0.00083
Vanadium	0.0001	0.000082	<0.0001	<0.000082			0.0001	0.000082	0.00023
Zinc	0.60	0.49	0.0083	0.0068			0.61	0.50	1.4
Total Hazardous Metals*	0.053	0.043	0.0053	0.0043	<0.0001	<0.000082	0.058	0.048	0.13
Total Metals	0.72	0.59	0.033	0.027			0.76	0.62	1.7

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

8

This page has been left blank intentionally.

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number:

60493017

Emission Source:

Shredder Stack

Date Sampled:

28-Mar-18

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Bulland

James Lang

Dylan Turnbull

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Test 1:

Stack/Duct Description: Shredder Stack Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3: Hazardous Substances (Metals)

		Measurement/Obse	rvations	
Stack Inter	nal Dimensions:			
Diameter	760) mm	Cross Sectional Area	. 0.45 m ²
OR	Length	Width		
Length/Wid			Minimum No. of	
Equivalent	, ,	mm	sampling points=	12
			campining points	· · · · ·
Distance fr	om sampling plane to		Total No. of sampling	points = 12
nearest dis			Total Horos of Call pining	PM2.5/10= 12
			No. of sampling traver	
Upstream ((m) = 5		sampled =	2
No. Diame			Campica	PM2.5/10= 2
	stream Disturbance:	Fan Entry	No. of sampling points	
Downstrea		1 an Endy	traverse/port =	6
No. Diame			Tavorso, port –	PM2.5/10= 6
The state of the s	wn Stream Disturbance:	Stack Evit		1 1012.5/10-
Type of Do	Wil Otream Disturbance.	Otdok Exit	Evaluaion of any com-	ala naint
Desition of	and assertion saint for		Exclusion of any samp	
Position of	each sampling point, for	each traverse.	numbers - comments:	
			D	
No.	A Distance from wall	B I C time Ditat distances	PM10/2.5 A	PM2.5/10 B
1	33	S-type Pitot distances	Distance from wall	S-Type Pitot distances
2	111	81	111	81
3	225	195	225	195
	535	505	535	505
4	649			
5		619	649	619
6	727	697	727	697
7				
8				
9		- 10	0 1 1 1 1 1	<u> </u>
10			Check of total points a	
11			minimum, (yes/no) - c	omments:
12				
13				
14				
15			1	
16				
17				
18				
19			General Comments:	
20				
20 Signed:	199		Checked: Ben	latard

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	9:54	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:54	0	20.9	0.0
2	9:55	0	20.9	0.0
3	9:56	0	20.9	0.0
4	9:57	0	20.9	0.0
5	9:58	0	20.9	0.0
6	9:59	0	20.9	0.0
7	10:00	0	20.9	0.0
8	10:01	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3):

0.98

Moisture percentage (M2):

2.50 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.1 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.4 %,(wet)	
H ₂ O:	2.50 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3: Ha:

Hazardous Substances (Metals)

Sampling time start:	11:24	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:24	0	20.9	0.0
2	11:25	0	20.9	0.0
3	11:26	0	20.9	0.0
4	11:27	0	20.9	0.0
5	11:28	0	20.9	0.0
6	11:29	0	20.9	0.0
7	11:30	0	20.9	0.0
8	11:31	0	20.9	0.0
	Averages:	0.0 ppn	n 20.9 %	0.0 %

Moisture content (M3):

0.98

Moisture percentage (M2):

2.10 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.4 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.5 %,(wet)	
H ₂ O:	2.10 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	9:55	Barometric Pi	ressure :	1017	hPa
Page No. :	1 of 1	Pitot Correction	on Factor :	0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S	The state of the s			(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts)	
1/1	3	0.035	29.0	302.2	6.6
1/2	81	0.027	29.0	302.2	5.8
1/3	195	0.036	29.0	302.2	6.7
1/4	505	0.046	29.0	302.2	7.5
1/5	619	0.039	29.0	302.2	6.9
1/6	697	0.046	29.0	302.2	7.5
2/1	3	0.036	29.0	302.2	6.7
2/2	81	0.036	29.0	302.2	6.7
2/3	195	0.033	29.0	302.2	6.4
2/4	505	0.046	29.0	302.2	7.5
2/5	619	0.037	29.0	302.2	6.7
2/6	697	0.039	29.0	302.2	6.9
				-	
V XXXX Ex Ex VXXX					
				-	
			- 100		
Average			29.0	302.2	6.8
L Average			23.0	302.2	0.0

Static Pressure (Dwyer) (Pa):

kPa

Static Pressure (U-tube, if required):

4.2 mm

Absolute pressure in stack (hPa):

1017.41 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack Description No.: Sample Nozzle No.:

Shredder Stack

fine6

Sample Nozzle Area (An):

2.38

 $\times 10^{-5} \text{m}^2$

Sampling Port No .:

1 to 2

Thimble No:

T535

Page No:

1 of 1

Blank thimble No:

0

Leak Check (Pre-Sampling)

487.4925

Meter start: Time start:

486.2456 Meter finish: 9:35 Time finish:

486.2456 Meter start: 9:36 Time start:

487.4925 Meter finish: 11:31 Time finish:

11:32

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat:

Repeat:

Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1017 hPa (start);

1017 hPa (finish)

Meter start:

486.2908

Time start:

10:01

Meter correction factor (GMf):

1.0100

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:15	33	13.3	28.0	24.0	remp (C)	Yes
1/2	0:06:15	111	13.3	30.0	25.0		Yes
1/3	0:07:15	225	13.3	32.0	26.0		Yes
1/4	0:08:15	535	13.3	34.0	26.0		Yes
1/5	0:07:45	649	13.3	36.0	27.0		Yes
1/6	0:08:15	727	13.3	38.0	28.0		Yes
170	0.00.10	121	10.0	30.0	20.0		103
2/1	0:07:15	33	13.3	39.0	28.0		Yes
2/2	0:07:15	111	13.3	39.0	29.0		Yes
2/3	0:07:00	225	13.3	39.0	29.0	22	Yes
2/4	0:08:15	535	13.3	39.0	29.0		Yes
2/5	0:07:30	649	13.3	39.0	30.0		Yes
2/6	0:07:45	727	13.3	39.0	30.0		Yes
26	12.00						

	1000						
							100
							-
							
				NA MA	The Section 18 House		-

							-
		1000					
Averages				36.0	27.6	no result	
Meter Finish:		487.4905		Time Finish:	27.0	11:31	

Total Condensate collected:

Silica gel No(s) used:

G046

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS SAMPLING OF TOTAL PARTICULATE

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No: Stack Description No.:

Shredder Stack

Sample Nozzle No.:

S3

Sample Nozzle Area (An):

 $x 10^{-5} m^2$

Sampling Port No.:

1 to 2

1 of 1

Thimble No:

T540

3.02

Page No:

60493017

Blank thimble No:

Leak Check (Post Sampling) 608.7088 Meter start: 9:38 Time start:

609.8406 Meter finish: 11:33 Time finish:

609.8406 11:34

Meter start: Time start:

608.7088 Meter finish: 9:37 Time finish:

L/min

Therefore, leakage rate = no leak

Leak Check (Pre-Sampling)

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1017 hPa (start);

1017 hPa (finish)

Meter start:

608.7124

Time start:

10:01

Meter correction factor (GMf):

1.0100

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:30	33	11.9	30.0	24.0		Yes
1/2	0:15:00	111	10.5	33.0	26.0		Yes
1/3	0:22:30	225	12.1	36.0	27.0		Yes
1/4	0:30:00	535	13.5	38.0	28.0		Yes
1/5	0:37:30	649	12.5	40.0	29.0		Yes
1/6	0:45:00	727	13.5	42.0	30.0		Yes
					070K0 (0300000 030		
2/1	0:52:30	33	12.1	44.0	31.0		Yes
2/2	1:00:00	111	12.1	46.0	32.0	2021V-324X1520	Yes
2/3	1:07:30	225	11.6	46.0	33.0		Yes
2/4	1:15:00	535	13.5	46.0	33.0		Yes
2/5	1:22:30	649	12.1	46.0	34.0		Yes
2/6	1:30:00	727	12.5	46.0	34.0		Yes
		17 211					

						71,52	
						2.000	
							300

			201				
)				
						-	
Averages				41.1	30.1	no result	

Total Condensate collected:

8 ml

Silica gel No(s) used:

101

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

Shredder Stack

Stack Description No.: Sample Nozzle No.:

G7

Sample Nozzle Area (An):

60493017

x 10⁻⁵m²

Sampling Port No.: Page No:

Meter start:

Time start:

1 to 2

Thimble No:

Blank thimble No:

Leak Check (Pre-Sampling)

1 of 1

9:40 Time start:

Leak Check (Post Sampling) 578.1200 Meter start:

579.4828 Meter finish: 11:35 Time finish:

3.53

579.4828 11:36

Therefore, leakage rate = no leak

9:39 Time finish:

578.1200 Meter finish:

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat:

Comments:

Sampling Record Table

Barometric Pressure:

1017 hPa (start);

1017 hPa (finish)

Meter start:

578.1266

Time start:

10:01

Meter correction factor (GMf):

1.0100

7	Stopwatch		7000		1	T	
_	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:30	33	13.9	27.0	24.0	Temp (O)	Yes
1/2	0:15:00	111	12.2	31.0	25.0	1.1100	Yes
1/3	0:22:30	225	14.1	35.0	26.0		Yes
1/4	0:30:00	535	15.8	39.0	27.0		Yes
1/5	0:37:30	649	14.6	42.0	28.0		Yes
1/6	0:45:00	727	15.8	44.0	28.0		Yes
2/1	0:52:30	33	14.1	46.0	29.0		Yes
2/2	1:00:00	111	14.1	48.0	29.0		Yes
2/3	1:07:30	225	13.5	48.0	30.0	0.0	Yes
2/4	1:15:00	535	15.8	48.0	30.0		Yes
2/5	1:22:30	649	14.1	48.0	31.0		Yes
2/6	1:30:00	727	14.6	48.0	31.0		Yes
	Vic. 1977 1 1980 1 1980 1						
						W	
	12. 2						
							1.500
						· · · · · · · · · · · · · · · · · · ·	
				3			
					200		
PART AND	99194						
		ta est est est est est					102
					W - W - W - J	1 134 10 10 10 10	
						1,000	
Averages				42.0	28.2	no result	

Total Condensate collected:

2 ml

Silica gel No(s) used:

Z18

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :		Barometric Pr		1017	hPa
Page No. :	1 of 1	Pitot Correction		0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			101
Sampling Position	Distance	Differential	Max Temp.	Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	°C	K	(Vs) m/s
140.	(mm)	ΔP, kilo	C	IX.	(\$ 5) 111/5
		Pascals			
1/1	3	0.037	31.0	304.2	6.8
1/2	81	0.029	31.0	304.2	6.0
1/3	195	0.034	31.0	304.2	6.5
1/4	505	0.044	31.0	304.2	7.4
1/5	619	0.041	31.0	304.2	7.1
1/6	697	0.045	31.0	304.2	7.4
2/1	3	0.037	31.0	304.2	6.8
2/2	81	0.036	31.0	304.2	6.7
2/3	195	0.031	31.0	304.2	6.2
2/4	505	0.044	31.0	304.2	7.4
2/5	619	0.039	31.0	304.2	6.9
2/6	697	0.038	31.0	304.2	6.8
		-i -i incurrent was a			
				11 1 1	
		2			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			***		2000
Average			31.0	304.2	6.8

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa 4.5 mm

1017.44 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oixd	isable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (lf Required) (5C)
Antimony	0.00025	0.000053			
Arsenic	0.00033	<0.0001			
Beryllium	<0.0001	<0.0001			
Cadmium	0.034	0.00015			
Chromium	0.0029	0.0015			
Cobalt	0.00007	<0.0001			
Copper	0.005	<0.0001	-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
Lead	0.0068	0.00091			
Magnesium	0.065	0.019			
Manganese	0.0065	< 0.0099			
Mercury	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel	0.0016	0.0027			
Selenium	<0.0001	< 0.0001			
Thallium	<0.0001	<0.0001			
Tin	0.00037	<0.0087			
Vanadium	0.0001	<0.0001			
Zinc	0.6	0.0083			

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	0.00025	0.00021	0.000053	0.000044			0.00030	0.00025	0.00069
Arsenic	0.00033	0.00027	<0.0001	<0.000082			0.00033	0.00027	0.00074
Beryllium	<0.0001	<0.000082	<0.0001	<0.000082			< 0.0001	<0.000082	<0.00023
Cadmium	0.034	0.028	0.00015	0.00012			0.034	0.028	0.077
Chromium	0.0029	0.0024	0.0015	0.0012			0.0044	0.0036	0.0099
Cobalt	0.00007	0.000058	<0.0001	<0.000082			0.00007	0.000058	0.00016
Copper	0.0050	0.0041	<0.0001	< 0.000082			0.0050	0.0041	0.011
Lead	0.0068	0.0056	0.00091	0.00075			0.0080	0.0064	0.018
Magnesium	0.065	0.053	0.019	0.016			0.084	0.069	0.19
Manganese	0.0065	0.0053	<0.0099	<0.0081			0.0065	0.0053	0.015
Mercury	<0.0001	<0.000082	<0.0001	<0.000082	< 0.0001	<0.000082	< 0.0001	<0.000082	< 0.00023
Nickel	0.0016	0.0013	0.0027	0.0022			0.0043	0.0035	0.0097
Selenium	<0.0001	<0.000082	<0.0001	<0.000082			< 0.0001	<0.000082	< 0.00023
Thallium	< 0.0001	<0.000082	<0.0001	< 0.000082			< 0.0001	<0.000082	< 0.00023
Tin	0.00037	0.00030	<0.0087	< 0.0071			0.00037	0.00030	0.00083
Vanadium	0.0001	0.000082	<0.0001	<0.000082			0.0001	0.000082	0.00023
Zinc	0.60	0.49	0.0083	0.0068			0.61	0.50	1.4
Total Hazardous Metals*	0.053	0.043	0.0053	0.0043	<0.0001	<0.000082	0.058	0.048	0.13
Total Metals	0.72	0.59	0.033	0.027			0.76	0.62	1.7

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.2117 m³

Average barometric

Average gas meter temp. (T_{M,2}):

31.8 °C

pressure (PBARO)

1017 hPa

305.0 K

Average pressure at meter (P_{M.2})

1017.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

1.0894 m³

(B) PM10 concentration at standard conditions

Blank thimble No .:

Blank weight: PM10 Weight

0.0026 g

Thimble No. used:

PM10 Concentration (C1):

T535 Final PM10 Weight (Mp1):

0.00260 g

 $=M_{p1}/MV_4=$

0.0024 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

2.4 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

0.0 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.0024 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

2.4 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

O2 Basis 7 %

Average O2%:

20.9 %

Therefore, C_b:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.34 g/m3 (0°C, dry gas, 1atm pressure,

;and C_{b1} =

340 mg/m3 (0°C, dry gas, 1atm pressure,

4 mL (=grams)

108)

(recorded on

Laboratory Form

 O_2)

(C) Moisture content

Silica Gel Number:

G046

V, =

14.7 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0053

Volume of Water Vapour Condensed $(V_{wsg(std)}) =$

0.0196

Therefore, Bws =

 $(V_{wc(std)}+V_{wsq(std)})$ $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} =$

2.24 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.27 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (273.2+Ts) (1013.25)

1.149 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

6.83 m/s

(ii) Average of post-sampling velocities:

6.83 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

6.83 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

- (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

3.10 m³/s (stack conditions)

Qstd =

Qstack x

Ps x

 $(Tstd) \times (100 - B_w)$

(Pstd)

100 (Ts)

Ostd =

2.7 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

$$Rm = C_{1a} \times Qstd = 0.0066$$
 g/s (0°C, 0°C)

g/s (0°C, dry gas, 1 atm pressure

6.6

mg/s (0°C, dry gas, 1 atm pressure

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1 1379 m³

Average barometric

Average gas meter temp. (T_{M,2}):

35.6 °C

pressure (PBARO)

1017 hPa

308.8 K

Average pressure at meter

 $(P_{M,2})$

1017.00 hPa

Sample gas volume (MV₄); (0°C, dry

Total Particulate Concentration (C1):

gas, 1 atm pressure):

1.0104 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No:

Blank weight:

0.0366 g

Thimble No. used: Final Total Particulate Weight (Mp1):

T540

0.03660 g

Total Particulate Weight

0.036 g/m3 (0°C, dry gas, 1atm pressure)

;and $C_2 =$

 $=M_{p1}/MV_4=$

36 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis Average CO2%: 12 %

7 %

0.0 %

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.036 g/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

;and $C_{c1} =$

36 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

Average O₂%:

O₂ Basis

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

5 g/m³ (0°C, dry gas, 1atm pressure,

7% 02)

;and C_{h1} =

5000 mg/m³ (0°C, dry gas, 1atm pressure,

8 mL (=grams)

108)

(recorded on

Laboratory Form

02)

(C) Moisture content

Silica Gel Number:

101

V_v =

11.2 g (from laboratory report)

Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0107

Volume of Water Vapour Condensed $(V_{wsq(std)}) =$

0.0150

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsa(std)})$ $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

 $B_{ws} =$

2.47 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.158 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

6.83 m/s

(ii) Average of post-sampling velocities:

6.83 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

6.83 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

sampling velocities (Vs): (Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

3.10 m³/s (stack conditions)

)

Qstd =

$$\frac{\text{(Tstd)}}{\text{(Ts)}} \times \frac{\text{(100 - B}_{w})}{\text{100}}$$

Qstd =

(G) Mass Emission Rate

$$Rm = C_{1a} \times Qstd = 0.098$$

= 98

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

28-Mar-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.3681 m³

Average barometric

Average gas meter temp. (T_{M.2}):

35.1 °C

pressure (PBARO)

1017 hPa

308.3 K

 $(P_{M,2})$

Average pressure at meter 1017.00 hPa

Sample gas volume (MV₄); (0°C, dry

gas, 1 atm pressure):

1.2168 m³

(B) Metals concentration at standard conditions

Blank thimble No.: Thimble No. used:

Blank weight: Metals Weight

0.000058 g

Final Metals Weight (Mp1): Metals Concentration (C1):

0.00006 g

 $=M_{p1}/MV_4=$

0.000048 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

0.048 mg/m3 (0°C, dry gas,

1atm pressure)

CO2 Basis Average CO2%: 12 %

0.0 %

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.000048 g/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and $C_{c1} =$

 0.048 mg/m^3 (0° C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

Average O2%:

7 %

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.0067 g/m³ (0°C, dry gas, 1atm pressure,

02) 7%

;and $C_{b1} =$

6.7 mg/m³ (0°C, dry gas, 1atm pressure,

02)

(C) Moisture content

Silica Gel Number:

Z18

Volume of Water Vapour Condensed (Vwc(std)) =

Volume of Water Vapour Condensed (V_{wsq(std)}) =

V_v =

12.6 g (from laboratory report)

0.0027

0.0168

(recorded on Laboratory Form

2 mL (=grams)

108)

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsq(std)})$

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

 $B_{ws} =$

1.58 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

- (D) Gas Composition and Density (Re-calculation)
- (i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.27 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

1.149 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

6.83 m/s

(ii) Average of post-sampling velocities:

6.83 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

6.83 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

- and (ii) alone.)
- (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

3.10 m³/s (stack conditions)

Qstd = Qstack x

Qstd =

(G) Mass Emission Rate

Rm =
$$C_{1a} \times Qstd = 0.00013$$
 g/s (0°C, dry gas, 1 atm pressure)
= 0.13 mg/s (0°C, dry gas, 1 atm pressure)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31


EMISSION MONITORING RESULTS, SHREDDER STACK ONESTEEL HEXHAM

28-Mar-18
FINE PARTICULATE (PM10)
TOTAL PARTICULATE
HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	30.0 °C	303.2 K
Stack pressure (average)	1017 hPa	
Stack gas velocity (average, stack conditions)	6.8 m/s	
Stack gas flowrate (stack conditions)	3.1 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.7 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	10:01 -	11:31
Fine Particulate (PM10) Mass	2.6 mg	
Gas Volume Sampled	1.1 m ³	
Fine Particulate (PM10) Emission*1	2.4 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	6.6 mg/s	
Regulatory Limit	NA	
Total Particulate Testing		
Test Period	10:01 -	11:31
Total Particulate Mass	36.6 mg	
Gas Volume Sampled	1.0 m ³	
Total Particulate Emission*1	36 mg/m ³	
Total Particulate Mass Emission Rate*2	98 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	10:01 -	11:31
Hazardous Substances (Metals) Mass	0.058 mg	
Gas Volume Sampled	1.2 m ³	
Hazardous Substances (Metals) Emission*1	0.048 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.13 mg/s	
Regulatory Limit	NA	
Moisture Content (%)	2.0	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	
Hazardous Substances (Metals) Mass Gas Volume Sampled Hazardous Substances (Metals) Emission*1 Hazardous Substances (Metals) Mass Emission Rate*2 Regulatory Limit Moisture Content (%) Gas Density (dry at 1 atmosphere)	0.058 mg 1.2 m ³ 0.048 mg/m ³ 0.13 mg/s NA 2.0 1.29 kg/m ³	11.31

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

15692-0-M

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

29-Mar-18

Received: 28-Mar-18

Copy to:

FILE

Report To:

Cye Buckland

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
G046	14.7	
101	11.2	
Z18	12.6	

NATA Accredited Laboratory 18079 Accredited for compliance with

ISO/IEC 17025 - Testing

Reported By:

Michael Campbell

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

15692-0-P

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

29-Mar-18

Received: 28-Mar-18

Report To:

Cye Buckland

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T535	Filter		0.0026
T540	Filter	-	0.0366

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By:_

Michael Campbell

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

ANALYTICAL REPORT

	DETAI	

Contact Client

Cye Buckland

Address

AECOM Australia Pty Ltd 17 Warabrook Boulevard

Warabrook

SYDNEY NSW 2304

LABORATORY DETAILS

Manager

Laboratory Address

Adam Atkinson

SGS Melbourne EH&S

10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone Facsimile

02 8295 3600

02 8934 0001

Email Project cye.buckland@aecom.com

60493017/3.1

Order Number Samples

60493017/3.1 12

Telephone

Facsimile

Email

+61395743200

+61395743399

ME306190 R0

Au.SampleReceipt.Melbourne@sgs.com

SGS Reference Date Received

29 Mar 2018

Date Reported

11 Apr 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

MING

Weiming Dai Inorganic Supervisor MING

Weiming Dai Senior Chemist

ANALYTICAL REPORT

	s	ample Number Sample Matrix Sample Date Sample Name	ME306190.001 Filter 28 Mar 2018 Metals 1	ME306190.002 Filter 28 Mar 2018 Metals 12	ME306190.003 Impinger 28 Mar 2018 Metals 3	ME306190.00 Impinger 28 Mar 2018 Metals 4
Parameter	Units	LOR				
	Method: EPA		sted: 4/4/2018			
Sb	µg total	0.05	0.13	<0.05		
As	µg total	0.05	0.71	0.38		-
Se Se	µg total	0.05	<0.05	<0.05		
Od	µg total	0.05	34	<0.05		
Or .	µg total	0.05	4.5	1.6	-	
00	µg total	0.05	0.12	<0.05		
Du .	µg total	0.05	5.6	0.59	-	
Pb .	µg total	0.05	7.2	0.45		-
Λg	µg total	0.05	260	200	•	
An .	µg total	0.05	9.0	1.5	2	-
Hg	µg total	0.05	<0.05	<0.05		
Ji	µg total	0.05	1.8	0.18		
ie	µg total	0.05	<0.05	<0.05		
1	μg total	0.05	<0.05	<0.05	-	
Sn .	μg total	0.05	0.42	0.05	-	-
1	µg total	0.25	1.4	1.3		
Žn	µg total	0.05	5900	5300		92
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: El	PA29_METIMP	Tested: 10/4/2	018	<0.1	0.1
as	µg total	0.1			<0.1	<0.1
20	μg total	0.1			<0.1	<0.1
cd	µg total	0.1			<0.1	0.2
Sr.	μg total	0.1			<0.1	1.6
So .	µg total	0.1			<0.1	<0.1
Cu	µg total	0.1	-	-	<0.1	<0.1
Pb	μg total	0.1			<0.1	1.1
19	µg total	0.1			6.0	21
An .	µg total	0.1			0.2	2600
lg	µg total	0.1	2		<0.1	<0.1
li .	µg total	0.1			<0.1	2.9
ee	µg total	0.1			<0.1	<0.1
	μg total	0.1		-	<0.1	<0.1
Sn .	µg total	0.1	-		<0.1	6.3
	μg total	0.1			<0.1	<0.1
	μg total					-0.1
n	µg total	0.1			1.2	12

ANALYTICAL REPORT

ME306190 R0

	5	nple Number ample Matrix Sample Date ample Name	ME306190.005 Impinger 28 Mar 2018 Metals 8A	ME306190,006 Impinger 28 Mar 2018 Metals 9	ME306190.007 Impinger 28 Mar 2018 Metals 5A	ME306190.008 Impinger 28 Mar 2018 Metals 5C
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400	.FL.M29.02 USEPA M29 Method: EPA2	9_FILT Tes	sted: 10/4/2018			
Sb	μg total	0.05				2
As	μg total	0.05	•	-		
Be	µg total	0.05	-		-	7
Cd	μg total	0.05				<u>u</u>
Or	µg total	0.05		-		*
Со	μg total	0.05	-			-
Cu	μg total	0.05	-			
Pb	μg total	0.05				
Лg	μg total	0.05				-
⁄n	μg total	0.05				
lg	μg total	0.05	-			
I	μg total	0.05	-	*		2
e	μg total	0.05		-		
ı	μg total	0.05				-
n	μg total	0.05		•		
	µg total	0.25				-
n	μg total	0.05				121
Metals in Impingers M29 ETC MA-14	400.IMP.M29.06 (ug total) Method: EPA	29_METIMP	Tested: 4/4/20	18		
ih.	ug total	0.1		70.1		
bb .s	µg total	0.1	<0.1	<0.1	-	-
S	µg total	0.1	<0.1 <0.1	<0.1		•
s e	µg total µg total	0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1	•	-
s e d	µg total µg total µg total	0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1		•
s e d	µg total µg total µg total µg total	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1		
s e d r	pg total pg total pg total pg total pg total	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1	-	
s e d r o	pg total pg total pg total pg total pg total	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 0.1 <0.1	- - - - -	
s e d d ir co cu	pg total pg total pg total pg total pg total pg total	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 0.1 <0.1 0.1 <0.1		
s e d r o u b	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <20.1 <20.1 <20.1 20.2 2.3		
s e d f o u b l g	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <2.1 <2.1 0.2 2.3 9.9		
s e e d d d d d d d d d d d d d d d d d	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <2.1 2.3 9.9 <0.1	- - - - - - - - -	- - - - - - - - - -
s e d f o u b l g in	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 <	< 0.1	<0.1
ssee dd drift do du bb dg dn	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.2 2.3 9.9 <0.1 0.2 <0.1		<0.1
ss e e d d f f f f f f f f f f f f f f f f	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.2 2.3 9.9 <0.1 0.2 <0.1 <0.1		<0.1
s e d d f o u b b g in g i	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1
ssee dd drift do du bb dg dn	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.2 2.3 9.9 <0.1 0.2 <0.1 <0.1		<0.1

	S	mple Number ample Matrix Sample Date Sample Name	ME306190.009 Impinger 28 Mar 2018 Metals 8B	ME306190.010 Impinger 28 Mar 2018 Metals 11	ME306190.011 KMn04 28 Mar 2018 Metals 5B	ME306190.012 KMn04 28 Mar 2018 Metals 10
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA			ted: 10/4/2018			
Sb	µg total	0.05				-
As	µg total	0.05			-	
Be	µg total	0.05	-		-	2
Cd	μg total	0.05		-		-
Cr	µg total	0.05	-		-	
Co	μg total	0.05	-	-	-	
Cu	µg total	0.05	-	-		-
Pb	µg total	0.05	-		-	-
Mg	µg total	0.05	-			-
Mn	µg total	0.05	-			
Hg	µg total	0.05			-	
Ni	µg total	0.05	-			
Se	µg total	0.05		-	-	-
П	µg total	0.05	-	-		2=0
Sn	μg total	0.05				-
V	µg total	0.25	-	4		
Zn	μg total	0.05	-		-	-
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug	total) Method: EPA	A29_METIMP	Tested: 4/4/20	18		
	ua total	0.1				
	µg total	0.1				
As	µg total	0.1				
As De	µg total µg total	0.1				
As Be Cd	µg total µg total µg total	0.1 0.1 0.1	-	-		
As De Cd Cr	µg total µg total µg total µg total	0.1 0.1 0.1 0.1				•
As De Cd Cr Co	µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1				•
As De Cd Cr Co	µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1				•
Sb As De Cd Cr Co Cu	µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1				•
As De Cd Cr Co Cu Pb	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			-	•
As DE Cd Cr Co Gu Pb Mg Mn	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1				
As DE Cd Cr Co Cu Pb Mg Mn Hg	pg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			- - - - <0.1	
As DBB CCd CCr CCo CU Pb MG Mn Hg	pg total	0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1				
As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total	0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			- - - <0.1 -	- - - - <0.1
As De Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total	0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			- - - <0.1 - -	<0.1
As BE Cd Cr Co Cu Pb Mg Mn Hg Ni Se Ti Sn	pg total	0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			- - <0.1 - -	
As De Cd Cr Co Cu Pb Mg Mn Hg Ni Se	pg total	0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			- - - <0.1 - -	- - - <0.1

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA'. the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference	Units	LOR	MB	LCS %Recover
Sb	LB019540	µg total	0.05	<0.05	NA
As	LB019540	µg total	0.05	<0.05	NA
Be	LB019540	µg total	0.05	<0.05	NA
Cd	LB019540	µg total	0.05	<0.05	NA
Cr	LB019540	µg total	0.05	<0.05	NA
Co	LB019540	µg total	0.05	<0.05	NA
Cu	LB019540	µg total	0.05	<0.05	NA
Pb	LB019540	µg total	0.05	<0.05	NA
Mg	LB019540	μg total	0.05	<0.05	NA
Mn	LB019540	µg total	0.05	<0.05	NA
Hg	LB019540	μg total	0.05	<0.05	NA
Ni	LB019540	µg total	0.05	<0.05	NA
Se	LB019540	µg total	0.05	<0.05	NA
П	LB019540	µg total	0.05	<0.05	NA
Sn	LB019540	µg total	0.05	<0.05	NA
V	LB019540	µg total	0.25	<0.25	NA
Zn	LB019540	µg total	0.05	<0.05	NA

Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC	Units	LOR	MB	Los
	Reference				%Recovery
Sb	LB019541	µg total	0.1	<0.1	103%
As	LB019541	µg total	0.1	<0.1	103%
Be	LB019541	µg total	0.1	<0.1	106%
Cd	LB019541	µg total	0.1	<0.1	102%
Cr	LB019541	µg total	0.1	<0.1	104%
Co	LB019541	µg total	0.1	<0.1	107%
Cu	LB019541	µg total	0.1	<0.1	104%
Pb	LB019541	μg total	0.1	<0.1	104%
Mg	LB019541	µg total	0.1	<0.1	110%
Mn	LB019541	μg total	0.1	<0.1	103%
Hg	LB019541	µg total	0.1	<0.1	100%
Ni	LB019541	µg total	0.1	<0.1	104%
Se	LB019541	µg total	0.1	<0.1	99%
ті	LB019541	µg total	0.1	<0.1	102%
Sn	LB019541	μg total	0.1	<0.1	104%
V	LB019541	µg total	0.1	<0.1	105%
Zn	LB019541	μg total	0.1	<0.1	106%
Sample Volume*	LB019541	mL		0.0	NA

METHOD SUMMARY

METHODOLOGY SUMMARY

EPA 29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A.

. Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM -MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

EPA29

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29. USEPA 3015A and USEPA 6020A.

Prior to analysis. samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

NATA accreditation does not cover the

performance of this service.

Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

Raised or Lowered Limit of Reporting 11

OFH QC result is above the upper tolerance QC result is below the lower tolerance

QFL The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example. Total PAHs. Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg. the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2. providing a level of confidence of approximately 95%. unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- 1 Bq is equivalent to 27 pCi a.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP. less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability. indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions. if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration. forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

End of Report