

3rd Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

3rd Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

Client: OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

16-Oct-2018

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document 3rd Quarter Emissions Testing Report 2018

Ref 60493017

Date 10-October-2018

Prepared by Sharn Crosdale

Reviewed by Paul Wenta

AECOM Approved Signatory Chad Whitburn

Revision History

Dov	Revision Date	Details	Authorised	
Rev	Revision Date	Details	Name/Position	Signature
0	16-Oct-2018	Report for Issue	Chad Whitburn Associate Director - Compliance Services	alle

Table of Contents

1.0	Introduc	tion	1
2.0	Samplin	g Plane Requirements	2
3.0	Methodo	ology	3 3 3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Samplin	g Location	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Apper	ndix A		
	Field Sh	eets (17 pages)	Α
Apper	ndix B		
	Laborato	ory Results	
	(8 pages	s)	В
List of	f Tables		
Table	1	Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table	2	AECOM NATA Endorsed Methods	3
Table	3	Sampling Location Summary	4
Table	4	Shredder Baghouse Emission Results Summary, 18 September 2018	5
Table	5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals)	_
	_	Results, 18 September 2018	6
Tahla	б	Hazardous Substances (Metals) Flemental Analysis Results 18 Sentember	

7

2018

1

1.0 Introduction

AECOM was appointed by OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 18 September 2018 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 16962-0-M & 16962-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME308220 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean:
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in **Table 2**.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1	N/A	Selection of sampling positions
AS4323.2	N/A	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201 or 201A (as appropriate)	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 18 September 2018.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4 Shredder Baghouse Emission Results Summary, 18 September 2018

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m³)	31	100
Fine Particulate (PM ₁₀) (mg/m ³)	2.1	N/A
Lead (mg/m³)	0.054	5
Mercury (mg/m ³)	0.000062	1
Total Hazardous Substances (Metals) (mg/m³)	0.077	N/A

Results from testing conducted on EPL Point 1 on 18 September 2018 are below the regulatory limits listed in EPL 5345.

Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 18 September 2018 Table 5

Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	26.4	°C	299.6 K
Stack pressure (average)	1020	hPa	
Stack gas velocity (average, stack conditions)	5.3	m/s	
Stack gas flowrate (stack conditions)	2.4	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.2	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	10:45	-	12:05
Fine Particulate (PM ₁₀) Mass	2.0	mg	
Gas Volume Sampled	0.94	m^3	
Fine Particulate (PM ₁₀) Emission* ¹	2.1	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	4.6	mg/s	
Regulatory Limit	N/A		
Total Particulate Testing			
Test Period	10:45	-	12:05
Total Particulate Mass	19	mg	
Gas Volume Sampled	0.62	m^3	
Total Particulate Emission*1	31	mg/m³	
Total Particulate Mass Emission Rate*2	68	mg/s	
Regulatory Limit	100	mg/m³	
Hazardous Substances (Metals) Testing			
Test Period	10:45	-	12:05
Hazardous Substances (Metals) Mass	0.10	mg	
Gas Volume Sampled	1.3	m^3	
Hazardous Substances (Metals) Emission*1	0.077	mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.17	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	1.4		
Gas Density (dry at 1 atmosphere)	1.29	kg/m³	
Dry Molecular Weight	28.8	g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas
*2 Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture
content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 18 September 2018

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.0011	0.000845	0.00055	0.000423			0.0017	0.00131	0.00287
Arsenic	0.00046	0.000353	0.0003	0.00023			0.00076	0.000584	0.00128
Beryllium	0.00002	0.0000154	0.0002	0.000154			0.00022	0.000169	0.00037
Cadmium	0.00206	0.00158	0.0001	0.0000768			0.0022	0.00169	0.0037
Chromium	0.0026	0.002	0.0004	0.000307			0.003	0.0023	0.00503
Cobalt	0.00049	0.000376	0.0003	0.00023			0.00079	0.000607	0.00133
Copper	0.00605	0.00465	<0.0001	<0.000768			0.0061	0.00469	0.0103
Lead	0.0683	0.0525	0.0018	0.00138			0.07	0.0538	0.118
Magnesium	0.0472	0.0363	0.0138	0.0106			0.061	0.0469	0.103
Manganese	0.0089	0.00684	0.0082	0.0063			0.017	0.0131	0.0287
Mercury	0.00003	0.000023	<0.0001	<0.000768	0.0000513	0.0000394	0.000081	0.0000622	0.000136
Nickel	0.00195	0.0015	<0.0001	<0.000768			0.002	0.00154	0.00337
Selenium	<0.00081	<0.000622	0.0004	0.000307			0.0004	0.000307	0.000672
Thallium	0.0004	0.000307	0.00025	0.000192			0.00065	0.000499	0.00109
Tin	0.00174	0.00134	<0.0161	<0.0124			0.0017	0.00131	0.00287
Vanadium	<0.0042	<0.00323	<0.005	<0.00384			<0.0001	<0.000768	<0.000168
Zinc	0.46	0.353	0.0209	0.0161			0.48	0.369	0.807
Total Hazardous Metals*	0.0863	0.0663	0.0125	0.0096	0.0000513	0.0000394	0.101	0.077	0.169
Total Metals	0.601	0.462	0.0472	0.0363			0.648	0.498	1.09

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

This page has been left blank intentionally.

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number:

60493017

Emission Source:

Shredder Stack

Date Sampled:

18-Sep-18

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Julian Ward

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date: 18-Sep-18

Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

		Measurement/Obse	rvations		
Stack Inte	ernal Dimensions:				
	760 Length idth (mm) t Diameter N/A	mm Width mm	Cross Sectional Area Minimum No. of sampling points=	a 0.45 m	2
Distance	from compline place to		Total No. of namelia	المالية المالية	40
Distance from sampling plane to nearest disturbances:			Total No. of sampling	9 points = PM2.5/10=	12 12
ilearest di	isturbances.		No. of sampling trave		12
Upstream	(m) = 5		sampled =	erses/ports	2
No. Diam			Campica	PM2.5/10=	2
	pstream Disturbance:	Fan Entry	No. of sampling poin		-
	am (m) = 2	i dir Litay	traverse/port =	to on odon	6
No. Diam			ind vor our port	PM2.5/10=	6
	own Stream Disturbance:	Stack Exit		1 11/2.0/10	
Position o	of each sampling point, for	each traverse:	Exclusion of any san numbers - comments		
	Α	В	PM10/2.5 A	PM2.5/1	IO P
No.	Distance from wall	S-type Pitot distances	Distance from wall		
1	33	3	Distance from wall	S-Type Pitot d	
1 2	33 111	3 81	Distance from wall 33 111	S-Type Pitot d 3 81	listances
1 2	33 111 225	3 81 195	Distance from wall 33 111 225	S-Type Pitot d 3 81 195	listances
1 2 3 4	33 111 225 535	3 81 195 505	Distance from wall 33 111 225 535	S-Type Pitot d 3 81 195 505	listances
1 2 3 4	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649	S-Type Pitot d 3 81 195 505 619	listances
1 2 3 4	33 111 225 535	3 81 195 505	Distance from wall 33 111 225 535	S-Type Pitot d 3 81 195 505	listances
1 2 3 4 5 6 7	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649	S-Type Pitot d 3 81 195 505 619	listances
1 2 3 4 5 6 7 8	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649	S-Type Pitot d 3 81 195 505 619	listances
1 2 3 4 5 6 7 8	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13 14	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697	listances
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points minimum, (yes/no) -	S-Type Pitot d 3 81 195 505 619 697 against comments:	listances
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	33 111 225 535 649	3 81 195 505 619	Distance from wall 33 111 225 535 649 727 Check of total points	S-Type Pitot d 3 81 195 505 619 697 against comments:	listances

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date: 18-Sep-18
Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Test 3: Hazardous Substances (Metals)

Sampling time start:	10:40	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:40	0	20.9	0.0
2	10:41	0	20.9	0.0
3	10:42	0	20.9	0.0
4	10:43	0	20.9	0.0
5	10:44	0	20.9	0.0
6	10:45	0	20.9	0.0
7	10:46	0	20.9	0.0
8	10:47	0	20.9	0.0
	Averages	0.0 ppn	20.9 %	6 0.0 %

Moisture content (M3): 0.99
Moisture percentage (M2): 1.30 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.1 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O:	1.30 %(=M2)			
Therefore	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

18-Sep-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Hazardous Substances (Metals)

Sampling time start:	12:00	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:00	0	20.9	0.0
2	12:01	0	20.9	0.0
3	12:02	0	20.9	0.0
4	12:03	0	20.9	0.0
5	12:04	0	20.9	0.0
6	12:05	0	20.9	0.0
7	12:06	0	20.9	0.0
8	12:07	0	20.9	0.0
	Averages	0.0 ppm	20.9 %	

Moisture content (M3):

0.99

Moisture percentage (M2):

1.17 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.2 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.7 %,(wet)	
H ₂ O:	1.17 %(=M2)			
Therefore	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

18-Sep-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	10:35	Barometric P	ressure:	1020	hPa
Page No. :	1 of 1	Pitot Correct	ion Factor :	0.84	
Sampling Port No:	1 to 2	Stack Gas D	ensity:	1.28	kg/m ³
Pitot Tube Type :	S	378.31.39			(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	
1/1	3	0.020	26.3	299.5	4.9
1/2	81	0.023	26.4	299.6	5.2
1/3	195	0.023	26.4	299.6	5.2
1/4	505	0.023	26.4	299.6	5.2
1/5	619	0.025	26.4	299.6	5.4
1/6	697	0.019	26.3	299.5	4.7
2/1	3	0.021	26.3	299.5	5.0
2/2	81	0.025	26.4	299.6	5.4
2/3	195	0.025	26.4	299.6	5.4
2/4	505	0.029	26.4	299.6	5.9
2/5	619	0.025	26.4	299.6	5.4
2/6	697	0.033	26.3	299.5	6.3
Average			26.4	299.6	5.3

Static Pressure (Dwyer) (Pa):

kPa

Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : -1.8 mm 1019.82 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 18-Sep-18 Client: OneSteel Hexham

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: fine7 Sample Nozzle Area (An): 2.83 x 10⁻⁵m²

Sampling Port No.: 1 to 2 Thimble No: T588
Page No: 1 of 1 Blank thimble No: 0

Leak Check (Pre-Sampling) Leak Check (Post Sampling)

 Meter start:
 22109.2500 Meter finish:
 22109.2500 Meter start:
 22110.2630 Meter finish:
 22110.2630 Meter finish:

 Time start:
 10:27 Time finish:
 10:28 Time start:
 12:17 Time finish:
 12:18

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1020 hPa (start); 1020 hPa (finish)

Meter start: 22109.2500 Time start: 10:45

Meter correction factor (GMf): 1.0030

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:06:45	33	13.4	20.0	20.0		Yes
1/2	0:07:15	111	13.4	23.0	21.0		Yes
1/3	0:07:15	225	13.4	25.0	21.0		Yes
1/4	0:07:15	535	13.4	26.0	22.0		Yes
1/5	0:07:45	649	13.4	26.0	22.0		Yes
1/6	0:06:45	727	13.4	27.0	23.0		Yes
2/1	0:07:00	33	13.4	27.0	23.0		Yes
2/2	0:07:30	111	13.4	27.0	24.0	-	Yes
2/3	0:07:30	225	13.4	28.0	24.0		Yes
2/4	0:08:30	535	13.4	28.0	25.0		Yes
2/5	0:07:30	649	13.4	29.0	25.0		Yes
2/6	0:09:00	727	13.4	31.0	26.0		Yes
Averages		1 =		26.4 Time Finish	23.0	no result	

Meter Finish:22110.2600Time Finish:12:15Total Condensate collected:-5 mlSilica gel No(s) used:G042

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 18-Sep-18 OneSteel Hexham Client:

AECOM's Project No: 60493017

Stack Description No.: Shredder Stack

Sample Nozzle No.: S3 Sample Nozzle Area (An): 2.72 $\times 10^{-5} \text{m}^2$

Sampling Port No.: 1 to 2 Thimble No: T589

Page No: 1 of 1 Blank thimble No:

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)
Meter start: 574.1890 Meter finish: Meter start: 573.5150 Meter finish: 573.5150 Meter start: 574.1890 10:16 Time finish: Time start: 10:17 Time start: 12:19 Time finish: 12:20

Therefore, leakage rate = Therefore, leakage rate = no leak L/min no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1020 hPa (start); 1020 hPa (finish)

Meter start: 573.5150 Time start: 10:45

Meter correction factor (GMf): 1.0020

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:30	33	7.9	20.0	20.0	(C)	Yes
1/2	0:15:00	111	8.4	26.0	21.0		Yes
1/3	0:22:30	225	8.4	27.0	22.0		Yes
1/4	0:30:00	535	8.4	27.0	22.0		Yes
1/5	0:37:30	649	8.7	28.0	23.0		Yes
1/6	0:45:00	727	7.6	27.0	23.0		Yes
2/1	0:52:30	33	8.1	26.0	23.0		Yes
2/2	1:00:00	111	8.7	26.0	24.0		Yes
2/3	1:07:30	225	8.7	27.0	24.0		Yes
2/4	1:15:00	535	9.6	28.0	24.0		Yes
2/5	1:22:30	649	8.7	29.0	25.0		Yes
2/6	1:30:00	727	10.2	31.0	26.0		Yes
Averages		[.*		26.8	23.1	no result	

Time Finish: 12:15

Total Condensate collected: Silica gel No(s) used: G101 -6 ml

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Client:

18-Sep-18 OneSteel Hexham

AECOM's Project No:

60493017

Stack Description No.:

Shredder Stack

Sample Nozzle No.:

G64

Sample Nozzle Area (An):

4.78 0

x 10⁻⁵m²

Sampling Port No.:

1 to 2

Thimble No:

Page No: 1 of 1

Blank thimble No:

Leak Check (Pre-Sampling)

5437.4640 Meter finish:

5437.4640 Meter start:

5438.8890 Meter finish: 12:21 Time finish:

no leak

5438.8890 12:22

Meter start: Time start:

10:12 Time finish:

10:13 Time start:

L/min

(>0.1 l/min. is unacceptable)

Therefore, leakage rate = no leak

(>0.1 l/min. is unacceptable)

Therefore, leakage rate =

Leak Check (Post Sampling)

Repeat:

Repeat:

Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1020 hPa (start);

L/min

1020 hPa (finish)

Meter start:

5437.4640

Time start:

10:45

Meter correction factor (GMf):

0.9942

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:30	33	13.8	18.0	18.0		Yes
1/2	0:15:00	111	14.7	24.0	19.0		Yes
1/3	0:22:30	225	14.7	25.0	20.0		Yes
1/4	0:30:00	535	14.7	26.0	21.0		Yes
1/5	0:37:30	649	15.3	26.0	22.0		Yes
1/6	0:45:00	727	13.3	27.0	23.0		Yes
2/1	0:52:30	33	14.1	27.0	24.0		Yes
2/2	1:00:00	111	15.3	28.0	24.0		Yes
2/3	1:07:30	225	15.3	31.0	25.0		Yes
2/4	1:15:00	535	16.7	33.0	26.0		Yes
2/5	1:22:30	649	15.3	34.0	26.0		Yes
2/6	1:30:00	727	17.8	36.0	29.0		Yes
Averages				27.9	23.1	no result	

Total Condensate collected:

3 ml

Silica gel No(s) used:

G068

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

18-Sep-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017

Stack/Duct Description:

Shredder Stack

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Test 3:Hazardous Substances (Metals)

Time :	12:10	Barometric P		1020 0.84	hPa
Page No. :	1 of 1	A control of the cont			3
Sampling Port No:	1 to 2	Stack Gas D	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts)	Corrected Velocity (Vs) m/s
1/1	3	0.020	26.3	299.5	4.8
1/2	81	0.023	26.4	299.6	5.2
1/3	195	0.023	26.4	299.6	5.2
1/4	505	0.023	26.4	299.6	5.2
1/5	619	0.025	26.4	299.6	5.4
1/6	697	0.019	26.3	299.5	4.7
		5,0,0	20.0	200.0	
2/1	3	0.021	26.3	299.5	5.0
2/2	81	0.025	26.4	299.6	5.4
2/3	195	0.025	26.4	299.6	5.4
2/4	505	0.029	26.4	299.6	5.9
2/5	619	0.025	26.4	299.6	5.4
2/6	697	0.033	26.3	299.5	6.3
		7.			
		-	-		
		-			
			1		
					-
			-		
Avorage			26.4	299.6	5.3
Average			20.4	255.0	0.0

Static Pressure (Dwyer) (Pa):

kPa

Static Pressure (U-tube, if required) :

-1.8 mm

Absolute pressure in stack (hPa):

1019.82 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

18-Sep-18 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oxidi	sable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (If Required) (5C)
Antimony	0.0011	0.00055			SVESTIME AND S
Arsenic	0.00046	0.0003			NAMES OF STREET
Beryllium	0.00002	0.0002		and the same	
Cadmium	0.00206	0.0001		Professional Control	WHITE CONTROLLED
Chromium	0.0026	0.0004			
Cobalt	0.00049	0.0003		lanta journa	
Copper	0.00605	< 0.0001	\$200000000000	97745040555	480000000000000
Lead	0.0683	0.0018	Participation	PAMPARAGES	PARKET STATE
Magnesium	0.0472	0.0138	344341343343	13/01/2007/00/01	200000000000000000000000000000000000000
Manganese	0.0089	0.0082			
Mercury	0.00003	< 0.0001	< 0.0001	0.0000513	< 0.0001
Nickel	0.00195	< 0.0001	FG570555555		505/504500000
Selenium	<0.00081	0.0004	ditakterkerkere.		20 SECTION SECTION 1
Thallium	0.0004	0.00025	100000000000000000000000000000000000000	stinianan (a.)	543500000
Tin	0.00174	< 0.0161	teresees to		
Vanadium	<0.0042	< 0.005	assancia cinco	and the second	čiodeostecnos
Zinc	0.46	0.0209	010040900000	44808080	

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date: 18-Sep-18 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.0011	0.000845	0.00055	0.000423			0.0017	0.00131	0.00287
Arsenic	0.00046	0.000353	0.0003	0.00023	45000000000	001001110110	0.00076	0.000584	0.00128
Beryllium	0.00002	0.0000154	0.0002	0.000154			0.00022	0.000169	0.00037
Cadmium	0.00206	0.00158	0.0001	0.0000768		200503484655	0.0022	0.00169	0.0037
Chromium	0.0026	0.002	0.0004	0.000307	3303003033	REMODERATION SE	0.003	0.0023	0.00503
Cobalt	0.00049	0.000376	0.0003	0.00023			0.00079	0.000607	0.00133
Copper	0.00605	0.00465	< 0.0001	<0.0000768	0.531,010,010,031		0.0061	0.00469	0.0103
Lead	0.0683	0.0525	0.0018	0.00138	12/02/37/47		0.07	0.0538	0.118
Magnesium	0.0472	0.0363	0.0138	0.0106			0.061	0.0469	0.103
Manganese	0.0089	0.00684	0.0082	0.0063			0.017	0.0131	0.0287
Mercury	0.00003	0.000023	< 0.0001	<0.0000768	0.0000513	0.0000394	0.000081	0.0000622	0.000136
Nickel	0.00195	0.0015	< 0.0001	<0.0000768	SEX SERVICE SERVICES	663626666	0.002	0.00154	0.00337
Selenium	<0.00081	< 0.000622	0.0004	0.000307		SEEDSELVERY	0.0004	0.000307	0.000672
Thallium	0.0004	0.000307	0.00025	0.000192		teries de cours	0.00065	0.000499	0.00109
Tin	0.00174	0.00134	< 0.0161	< 0.0124			0.0017	0.00131	0.00287
Vanadium	<0.0042	< 0.00323	< 0.005	< 0.00384		Managaran	< 0.0001	<0.0000768	<0.000168
Zinc	0.46	0.353	0.0209	0.0161			0.48	0.369	0.807
Total Hazardous Metals*	0.0863	0.0663	0.0125	0.0096	0.0000513	0.0000394	0.101	0.077	0.169
Total Metals	0.601	0.462	0.0472	0.0363			0.648	0.498	1.09

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

18-Sep-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0130 m³

Average barometric

Average gas meter temp. (T_{M2}):

24.7 °C

pressure (PBARO)

1020 hPa

297.9 K

Average pressure at meter

(P_{M,2})

1020.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.9352 m³

(B) PM10 concentration at standard conditions

T588

Blank thimble No.: Thimble No. used:

Blank weight: PM10 Weight

g 0.002 g

Final PM10 Weight (Mp1):

0.00200 g

PM10 Concentration (C1):

0.0021 g/m3 (0°C, dry gas,

1atm pressure)

1atm pressure)

;and C2 =

2.1 mg/m3 (0°C, dry gas,

CO2 Basis Average CO2%: 12 %

0.0 %

Therefore, C.:

 $= C_a \times 12/CO_2\% =$

0.0021 g/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

;and Cc1 =

2.1 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis 7 %

Average O2%:

20.9 %

Therefore, Cb:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.29 g/m3 (0°C, dry gas, 1atm pressure,

 O_2)

;and Cb1 =

290 mg/m3 (0°C, dry gas, 1atm pressure,

-5 mL (=grams)

108)

(recorded on

Laboratory Form

7% 02)

(C) Moisture content

Silica Gel Number:

G042

V. =

10.3 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

-0.0067

Volume of Water Vapour Condensed (Vwsg(std)) =

0.0138

Therefore, Bws =

(Vwc(std)+Vwsa(std)) $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} =$

0.75 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m3 (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (273.2+Ts) (1013.25)

1.175 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

5.33 m/s

(ii) Average of post-sampling velocities:

5.33 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

5.33 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

2.42 m3/s (stack conditions)

Qstd =

Qstack x

Ps x

(Tstd) × (100 - B_w)

(Pstd)

(Ts)

Qstd =

2.2 m3/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

$$Rm = C_{1a} \times Qstd = 0.0046 \qquad g/s (0^{\circ}C, dry gas, 1 atm pressure)$$

$$= 4.6 \qquad mg/s (0^{\circ}C, dry gas, 1 atm pressure)$$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

18-Sep-18

Client:

OneSteel Hexham

AECOM's Project No:

60493017 Stack/Duct Description:

Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.6723 m³

Average barometric

Average gas meter temp. (T_{M.2}):

25.0 °C

pressure (PBARO)

1020 hPa

298.2 K

Average pressure at meter (P_{M.2})

1020.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.6200 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.:

Blank weight:

Thimble No. used: Final Total Particulate Weight (Mp1):

T589

0.01930 g

Total Particulate Weight

0.0193 q

Total Particulate Concentration (C1):

 $=M_{p1}/MV_4=$

0.031 g/m3 (0°C, dry gas,

1atm pressure)

;and C2 =

31 mg/m³ (0°C, dry gas.

1atm pressure)

CO₂ Basis

12 %

Average CO2%:

0.0 %

Therefore, Cc:

 $= C_a \times 12/CO_2\% =$

0.031 g/m3 (0°C, dry gas, 1atm pressure, 12% CO2)

;and Cc1 =

31 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO2)

O₂ Basis

7 %

Average O2%:

20.9 %

Therefore, Ch:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

4.3 g/m3 (0°C, dry gas, 1atm pressure,

7%

;and Cb1 =

4300 mg/m³ (0°C, dry gas, 1atm pressure,

-6 mL (=grams)

02)

(C) Moisture content

Silica Gel Number:

G101

12.2 g (from laboratory report)

(recorded on Laboratory Form

108)

Volume of Water Vapour Condensed (Vwc(std)) = Volume of Water Vapour Condensed (Vwsg(std)) =

-0.00800.0163

Therefore, Bws =

(Vwc(std)+Vwsq(std))

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

1.32 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.175 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

5.33 m/s

(ii) Average of post-sampling velocities:

5.33 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

5.33 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 2.42 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) $\underline{(Ts)}$ 100

Qstd = 2.2 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

 $Rm = C_{1a} \times Qstd = 0.068 \qquad g/s (0^{\circ}C, dry gas, 1 atm pressure)$ $= 68 \qquad mg/s (0^{\circ}C, dry gas, 1 atm pressure)$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

18-Sep-18 Client: OneSteel Hexham

AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack

(A) Sample gas volume at standard conditions

Metered volume (MV3): 1.4138 m³ Average barometric

pressure (PBARO) Average gas meter temp. (T_{M2}): 25.5 °C 1020 hPa

> 298.7 K Average pressure at meter

(P_{M,2}) 1020.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 1.3017 m³

(B) Metals concentration at standard conditions

Blank thimble No .: Blank weight: 9 Thimble No. used: Metals Weight 0.000101 g

0.00010 g Final Metals Weight (Mp1):

Metals Concentration (C1): $=M_{n1}/MV_4=$ 0.000077 g/m3 (0°C, dry gas,

1atm pressure)

1atm pressure)

;and C2 = 0.077 mg/m3 (0°C, dry gas,

CO2 Basis 12 %

Average CO2%: 0.0 %

Therefore, Cc: $= C_a \times 12/CO_2\% =$ 0.000077 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and Cc1 = 0.077 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis 7 %

Average O2%: 20.9 %

Therefore, Ch: =C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%) 0.011 g/m3 (0°C, dry gas, 1atm pressure,

02)

;and Cb1 = 11 mg/m3 (0°C, dry gas, 1atm pressure,

7% 0,)

(C) Moisture content

G068 Silica Gel Number:

3 mL (=grams) 11.1 g (from laboratory report) (recorded on

Volume of Water Vapour Condensed (Vwc(std)) = 0.0040 Laboratory Form Volume of Water Vapour Condensed (Vwsq(std)) = 0.0148

108) Therefore, Bws =

(Vwc(std)+Vwsq(std)) $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$ 1.42 %

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1.175 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

5.33 m/s

(ii) Average of post-sampling velocities:

5.33 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-sampling velocities (Vs):

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

2.42 m³/s (stack conditions)

5.33 m/s (stack conditions, wet)

N/A m/s (stack conditions, wet)

Qstd =

Qstack x

<u>Ps</u> x

 $(Tstd) \times (100 - B_w)$

(Pstd)

(Ts)

100

Qstd =

2.2 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

$$Rm = C_{1a} \times Qstd = 0.00017 \qquad g/s (0^{\circ}C, dry gas, 1 atm pressure)$$

$$= 0.17 \qquad mg/s (0^{\circ}C, dry gas, 1 atm pressure)$$

Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, SHREDDER STACK ONESTEEL HEXHAM

18-Sep-18
FINE PARTICULATE (PM10)
TOTAL PARTICULATE
HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions:		
Stack internal diameter at test location	760 mm	
Stack gas temperature (average)	26.4 °C	299.6 K
Stack pressure (average)	1020 hPa	200.0 11
Stack gas velocity (average, stack conditions)	5.3 m/s	
Stack gas flowrate (stack conditions)	2.4 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.2 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	10:45 -	12:15
Fine Particulate (PM10) Mass	2.0 mg	V-20-1-4
Gas Volume Sampled	0.94 m ³	
Fine Particulate (PM10) Emission*1	2,1 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	4.6 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	10:45 -	12:15
Total Particulate Mass	19 mg	
Gas Volume Sampled	0.62 m ³	
Total Particulate Emission*1	31 mg/m ³	
Total Particulate Mass Emission Rate*2	68 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing		
Test Period	10:45 -	12:15
Hazardous Substances (Metals) Mass	0.10 mg	
Gas Volume Sampled	1.3 m ³	
Hazardous Substances (Metals) Emission*1	0.077 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.17 mg/s	
Regulatory Limit	N/A	
Moisture Content (%)	1.4	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report :

16962-0-M

Page 1 of 1

Project:

60493017

Description:

Stack Emission Samples

Date:

25-Sep-18

Rec

Received: 24-Sep-18

Copy to:

FILE

Report To: Colin Clarke

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
G042	10.3	
G068	11.1	
G101	12.2	

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Reported By: J. Campbel.

Jason Campbell - Manager

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Received: 24-Sep-18

Report:

16962-0-P

Page 1 of 1

Project:

60493017

Description: Stack Emission Samples

Date:

25-Sep-18

200

2 3 2 3 5 5 5

Copy to:

FILE

Report To: Colin Clarke

17 Warabrook Blvd, Warabrook NSW 2304

Thimble 1D Volume (mL) Total Particulate Matter (g)
T588 Filter - 0.0020
T589 Filter - 0.0193

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Note: Sampled by Client

Reported By: J. Canquel.

Jason Campbell - Manager

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2 Refer Form F422 - Measurement Uncertainty

nie	CALT	DE	TA 1	0
UL	IENT	DE	PAI	LS

Contact

Cye Buckland

Client Address AECOM Australia Pty Ltd

17 Warabrook Boulevard Warabrook

SYDNEY NSW 2304

Telephone

02 8295 3600 02 8934 0001

Facsimile Email

cye,buckland@aecom.com

Project

(Not specified) 60493017/3.1

Order Number Samples

LABORATORY DETAILS

Manager

Laboratory

Address

Adam Atkinson

SGS Melbourne EH&S

10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone

Facsimile

+61395743200 +61395743399

Email

Au.SampleReceipt.Melbourne@sgs.com

SGS Reference

Date Received Date Reported ME308220 R0 21 Sep 2018

02 Oct 2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

Weiming Dai Inorganic Supervisor

MING

Ryan Zhang Team Leader

ME308220 R0

18 -	Sa S	ple Number mple Matrix ample Date mple Name	ME308220.001 Filter 18 Sep 2018 Metals No. 1	ME308220,002 Filter 18 Sep 2018 Metals No. 12	ME308220.003 Impinger Solution 18 Sep 2018 Metals No. 3	ME308220,004 Impinger Solution 18 Sep 2018 Metals No. 4
Parameter	Units	LOR	373			
Metals in Filters M29 ETC MA-1400.FL	.M29.02 USEPA M29 Method: EPA29	FILT Te	sted: 26/9/2018			
inietais III I liters M25 210 IIIA 1400.1			221	0.14	-	
Sb	μg total	0.05	0.64	0.66	-	
As	μg total	0.05	0.82		-	
Be	µg total	0.05	0.16	0.14		-
Cd	μg total	0.05	1.9	2.0	-	-
Cr	μg total	0.05	3.6	0.13		
Co	μg total	0.05	0.32	0.35		-
Cu	μg total	0.05	3.5	1.0	-	-
Pb	μg total	0.05	33	220		1.0
Mg	μg total	0.05	250	1.9		
Mn	μg total	0.05	6.8	<0.05		-
Hg	μg total	0.05	0.08	<0.05		
Ni	μg total	0.05	1.5		-	
Se	μg total	0.05	0.35	0.41		
П	µg total	0.05	0.20	0.10		
Sn	μg total	0.05	1.4	0.26	- 1	-
V	μg total	0.25	1.4	1.2		
Zn	μg total	0.05	6100	5800		
Metals in Impingers M29 ETC MA-140	0.IMP.M29.06 (ug total) Method: EPA	29_METIME	Tested: 2/10/	2018		
Sb	μg total	0.1		-	0.6	0.6
As	μg total	0.1		-	0.4	0.4
Be	μg total	0.1	1-	1-	0.2	0.4
Cd	μg total	0.1	-	4	0.4	0.5
Cr	µg total	0.1	4		1.2	
						0.7
Co	µg total	0.1		-	0.4	0.7
		0,1		-	0.4 2.9	
Cu	μg total	-				0.4
Cu Pb	μg total μg total	0.1		-	2.9	0.4 <0.1
Cu Pb Mg	µg total µg total µg total	0.1		-	2.9 39	0.4 <0.1 4.5 18 8.9
Cu Pb Mg Mn	µg total µg total µg total µg total	0.1 0.1 0.1		-	2.9 39 20	0.4 <0.1 4.5
Cu Pb Mg Mn Hg	µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1		-	2.9 39 20 4.4	0.4 <0.1 4.5 18 8.9
Cu Pb Mg Mn Hg Ni	µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1			2.9 39 20 4.4 <0.1	0.4 <0.1 4.5 18 8.9 <0.1
Cu Pb Mg Mn Hg Ni Se	pg total	0.1 0.1 0.1 0.1 0.1 0.1			2.9 39 20 4.4 <0.1	0.4 <0.1 4.5 18 8.9 <0.1
Cu Pb Mg Mn Hg Ni Se	µg total µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1			2.9 39 20 4.4 <0.1 0.5	0.4 <0.1 4.5 18 8.9 <0.1 <0.1
Cu Pb Mg Mn Hg Ni Se Ti Sn	μg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			2.9 39 20 4.4 <0.1 0.5 0.4	0.4 <0.1 4.5 18 8.9 <0.1 <0.1 1.0
Co Cu Pb Mg Mn Hg Ni Se Tl Sn V	μg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			2.9 39 20 4.4 <0.1 0.5 0.4 0.3	0.4 <0.1 4.5 18 8.9 <0.1 <0.1 1.0 0.3

ME308220 R0

	s	nple Number ample Matrix Sample Date ample Name	ME308220.005 Impinger Solution 18 Sep 2018 Metals No. 8A	ME308220,006 Impinger Solution 18 Sep 2018 Metals No. 9	ME\$08220.007 Impinger Solution 18 Sep 2018 Metals No. 5A	ME308220.008 Impinger Solution 18 Sep 2018 Metals No. 5C
Parameter	Units	LOR				173
Metals in Filters M29 ETC MA-1400.F	L.M29.02 USEPA M29 Method: EPA2	9_FILT Tes	sted: 1/10/2018			
Sb	μg total	0.05				
As	µg total	0.05			12	
Ве	μg total	0.05	-	-		-
Cd	µg total	0.05	-	-		
Cr	µg total	0.05				-
Co	µg total	0.05		-		
Cu	µg total	0.05	4.	-		
Pb	μg total	0.05	-	*	-	4
Mg	µg total	0.05	-	-	-	
Mn	μg total	0.05	-		-	
Hg	μg total	0.05		-		
Ni	µg total	0.05				
Se	μg total	0.05	4.	1.	1	Name of
TI	μg total	0.05			4	
Sn	μg total	0.05	-	-	1-	
V	μg total	0.25				
Zn	μg total	0.05		- 1		
Metals in Impingers M29 ETC MA-1400	J.IMP.M29.06 (ug total) Method: EPA:	29 METIMP	Total prince			
Sb			Tested: 26/9/201			
	µg total	0.1	<0.1	<0.1		
As	µg total µg total	0.1	<0.1	<0.1 <0.1	•	
As Be	µg total µg total µg total	0.1 0.1 0.1	<0.1 0.1 0.2	<0.1 <0.1 <0.1	•	•
As Be Cd	µg total µg total µg total µg total	0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1	<0.1 <0.1 <0.1 0.3	·	•
As Be Cd Cr	µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2	<0.1 <0.1 <0.1 0.3 0.1		
As Be Cd Cr Co	µg total µg total µg total µg total µg total µg total	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1	<0.1 <0.1 <0.1 0.3 0.1 <0.1	•	
As Be Cd Cr Co	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1		
As Be CC CC CC CU	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 2.7	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1		
AS BBe CCI CCI CU WMg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 2.7 2.8	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <1.4 1.4		
AS BBe CCI CCI Pb Mg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 2.7 2.8 0.4	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		
AS Be Cd Cr Co Cu Pb Mg Mn	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 2.7 2.8	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <1.4 1.4		
AS Be Cd Cr Co Cu Pb Mg Mn	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 <0.1 2.7 2.8 0.4 <0.1 <0.1	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		
As Be Cd Cr Co Cu Pb Mg Mn Hg Ni	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 <0.1 2.7 2.8 0.4 <0.1 <0.1 0.4	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		
AS Be Cd Cr Co Cu Pb Mg Mn Hg	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 <0.1 2.7 2.8 0.4 <0.1 <0.1	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1
Sb As Be Cd Cr Co Cu Pb Mg Mn Hg Ni Se	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 <0.1 2.7 2.8 0.4 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1
AS Be Cd Cr Co Cu Pb Mg Mn Hg Si	µg total	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 <0.1 2.7 2.8 0.4 <0.1 <0.1 0.4 <0.1 0.1	<0.1 <0.1 <0.1 0.3 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1		<0.1

	Samp San	Number de Matrix aple Date de Name	ME308220,009 Impinger Solution 18 Sep 2018 Metals No, 8B	ME308220.010 Impinger Solution 18 Sep 2018 Metals No. 11	ME308220.011 KMnO4 18 Sep 2018 Metals No. 5B	ME308220,012 KMnO4 18 Sep 2018 Metals No. 10
Parameter	Units	LOR				
Metals in Filters M29 ETC MA-1400.FL.M29		ILT Te	sted: 1/10/2018			
Metals in Finers M25 ETC MAPIAGO. E.M25						
Sb	μg total	0.05	•		•	
As	µg total	0.05		•	-	
Ве	μg total	0.05	(4)	-		
Cd	μg total	0.05		1.0	-	
Cr	μg total	0.05	-	-		-
Co	µg total	0.05				
Cu	µg total	0.05			1.	•
Pb	μg total	0.05		•	-	
Mg	μg total	0.05	-	71	•	-
Mn	μg total	0.05	•	•	-	•
Hg	μg total	0.05		-	4-	•
Ni	μg total	0.05		Ψ,		
Se	μg total	0.05	*		-	
TI	μg total	0.05		-	-	
Sn	μg total	0.05	-	141		-
V	μg total	0.25	-	-	•	
Zn	μg total	0.05		+ 1	-	
Motals in Impingers M29 ETC MA-1400.IMP		_METIME	Tested: 26/9/2	018		-
Sb	μg total				-	-
As	μg total	0.1	-			
Be	μg total	0.1				
Cd	µg total	0.1	1			-
Cr	μg total	0,1		-		
Co	µg total	0.1	- 4			
Cu	µg total	0.1	-			
And the second s	μg total	0,1	-	· ·		
Pb						
Pb Mg	μg total	0.1	-			
		0.1	-		- 1	
Mg	µg total µg total µg total	0.1	<0.1	<0.1	0.1	- <0.1
Mg Mn	μg total μg total	0.1 0.1 0.1	- <0.1 -	<0.1	0.1	- <0.1 -
Mg Mn Hg	µg total µg total µg total	0.1 0.1 0.1 0.1	- <0.1 -	<0.1	0.1	<0.1
Mg Mn Hg Ni	pg total pg total pg total pg total	0.1 0.1 0.1	<0,1	<0.1	0.1	<0.1
Mg Mn Hg Ni Se	pg total pg total pg total pg total pg total	0.1 0.1 0.1 0.1	- <0.1 -	- <0.1 - -	- 0.1	- <0.1 - -
Mg Mn Hg Ni Se TI	pg total	0.1 0.1 0.1 0.1 0.1	<0,1	<0.1	- 0.1	<0.1 - - -
Mg Mn Hg Ni Se TI Sn	pg total	0.1 0.1 0.1 0.1 0.1 0.1	- <0.1 	- <0.1 - -	- 0.1	<0.1

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Filters M29 ETC MA-1400.FL,M29.02 USEPA M29 Method: EPA29_FILT

Parameter	QC Reference	LOR	MB	LCS %Recovery	
Sb	LB022885	µg total	0.05	<0.05	108%
As	LB022885	µg total	0.05	<0.05	103%
Be	LB022885	µg total	0.05	<0.05	98%
Cd	LB022885	µg total	0.05	<0.05	106%
Cr	LB022885	µg total	0.05	<0.05	100%
Co	LB022885	µg total	0.05	<0.05	109%
Cu	LB022885	µg total	0.05	<0.05	105%
Pb	LB022885	μg total	0.05	<0.05	107%
Mg	LB022885	µg total	0.05	<0.05	105%
Mn	LB022885	µg total	0.05	< 0.05	105%
Hg	LB022885	µg total	0.05	< 0.05	107%
Ni	LB022885	µg total	0.05	<0.05	104%
Se	LB022885	µg total	0.05	<0.05	95%
п	LB022885	µg total	0.05	<0.05	104%
Sn	LB022885	µg total	0.05	<0.05	106%
V	LB022885	µg total	0.25	<0.25	106%
Zn	LB022885	µg total	0.05	<0.05	102%

Metals in Impingers M26 ETC MA-1400.IMP.M29.06 (ug total) Method: EPA29_METIMP

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery	
Sb	LB022889	μg total	0.1	<0.1	108%	
As	LB022889	µg total	0.1	<0.1	103%	
Be	LB022889	µg total	0.1	<0.1	96%	
Cd	LB022889	µg total	0.1	<0.1	105%	
Cr	LB022889	µg total	0.1	<0.1	100%	
Co	LB022889	μg total	0,1	<0.1	107%	
Cu	LB022889	µg total	0.1	<0.1	104%	
Pb	LB022889	µg total	0.1	<0.1	108%	
Mg	LB022889	µg total	0,1	<0.1	109%	
Mn	LB022889	µg total	0.1	<0.1	105%	
Hg	LB022889	µg total	0.1	<0.1		
Ni	LB022889	µg total	0.1	<0.1	104%	
Se	LB022889	µg total	0.1	<0.1	92%	
TI	LB022889	µg total	0.1	<0.1	107%	
Sn	LB022889	µg total	0.1	<0.1	106%	
V	LB022889	µg total	0.1	<0.1	107%	
Żn	LB022889	µg total	0.1	<0.1	102%	
Sample Volume*	LB022889	mL		1.0	NA	

METHOD SUMMARY

METHOD

METHODOLOGY SUMMARY

EPA 29

EPA29

Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A.

. Filters are digested using the appropriate sample preparation methods.

A representative sample is extracted in concentrated acid using microwave heating by the CEM -MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.

This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29, USEPA 3015A and USEPA 6020A.

Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES .

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting QFH QC result is above the upper tolerance

QFL QC result is below the lower tolerance

The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg), Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

End of Report