Liberty OneSteel Recycling Pty Ltd Doc No. 60493017_3.1_Q4_2018 60493017

4th Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

NATA ACCREDITATION No. 2778 (14391) Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards This document may not be reproduced except in full.

4th Quarter Emissions Testing Report 2018

OneSteel Recycling Hexham

Client: Liberty OneSteel Recycling Pty Ltd

ABN: 28 002 707 262

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com ABN 20 093 846 925

08-Jan-2019

Job No.: 60493017

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document	4th Quarter Emissions Testing Report 2018
Ref	60493017
Date	07-January-2019
Prepared by	Sharn Crosdale
Reviewed by	Paul Wenta
AECOM Approved Signatory	Chad Whitburn

Revision History

Rev	Revision Date	Details	Authorised	
Rev Re	Revision Date	Details	Name/Position	Signature
0	08-Jan-2019	Report for Issue	Chad Whitburn Associate Director - Compliance Services	all the

Table of Contents

1.0	Introduct	ion	1
2.0	Sampling	g Plane Requirements	2
3.0	Methodo	logy	3
	3.1	NATA Accredited Methods	3
	3.2	Equipment Calibration	3
4.0	Sampling	gLocation	4
	4.1	Sampling Location Summary	4
5.0	Results		5
Appendi	хA		
	Field She	eets (17 pages)	A
Appendi	хB		
	Laborato	ry Results (8 pages)	В
	Laborato	ry Results (8 pages)	E

List of Tables

Table 1	Criteria for Selection of Sampling Planes (AS 4323.1)	2
Table 2	AECOM NATA Endorsed Methods	3
Table 3	Sampling Location Summary	4
Table 4	Shredder Baghouse Emission Results Summary, 13 December 2018	5
Table 5	Fine Particulate (PM ₁₀), Total Particulate and Hazardous Substance (Metals) Results, 13 December 2018	6
Table 6	Hazardous Substances (Metals) Elemental Analysis Results, 13 December	
	2018	7

1.0 Introduction

AECOM was appointed by Liberty OneSteel Recycling Pty Ltd to conduct a series of measurements to determine air emissions from the Shredder Baghouse Stack (EPL Point 1) at the Hexham facility. Measurements were required for NSW EPA licence compliance (EPL No. 5345).

Testing was undertaken on 13 December 2018 to investigate emission concentrations for the following parameters:

- Fine Particulates (PM₁₀);
- Total Particulate (TP); and
- Hazardous Substances (Metals) including Lead and Mercury.

Laboratory analysis was undertaken by the following laboratories which hold NATA accreditation for the specified tests:

- Steel River Testing, laboratory NATA accreditation number 18079, performed the following analysis detailed in report number 17626-0-M & 17626-0-P:
 - Total Particulate (TP);
 - Fine Particulates (PM₁₀); and
 - Moisture.
- SGS Australia Pty Ltd, NATA accreditation number 2562, performed the following analysis detailed in report number ME309136 R0:
 - Hazardous Substances (Metals).

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995 (R2014).

Table 1 Criteria for Selection of Sampling Planes (AS 4323.1)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a. The gas flow is basically in the same direction at all points along each sampling traverse;
- b. The gas velocity at all sampling points is greater than 3 m/s;
- c. The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- d. The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- e. The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- f. The gas temperature at the sampling plane should preferably be above the dewpoint.

The sampling plane for EPL Point 1 was compliant with the AS4323.1.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are accredited with the National Association of Testing Authorities (NATA) (accreditation number 2778 (14391)) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

 Table 2
 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
AS4323.1	N/A	Selection of sampling positions
AS4323.2	N/A	Determination of total particulate matter – isokinetic manual sampling – gravimetric method
NSW EPA TM-2	USEPA (2000) Method 2	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)
NSW EPA TM-22	USEPA (2000) Method 4	Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5	USEPA (1997) Method 201 or 201A (as appropriate)	Determination of PM ₁₀ emissions
NSW EPA TM-12,13 and 14	USEPA Method 29	Determination of metal emissions from stationary sources

All parameters are reported adjusted to 0°C at 1 atmosphere and dry gas.

3.2 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM calibration schedule. Details of the schedule and the calibration calculations are available on request.

4.0 Sampling Location

4.1 Sampling Location Summary

Table 3 provides a summary of the location sampled by AECOM on 13 December 2018.

Table 3 Sampling Location Summary

Discharge Description	Shredder Baghouse Stack (EPL Point 1)
Duct Shape	Circular
Construction Material	Metal
Duct Diameter (mm)	760
Minimum No. Sampling Points	12
Sampling Ports	2
Min. Points/Traverse	6
Disturbance	No
Distance from Upstream Disturbance	6.6D
Type of Disturbance	Bend
Distance from Downstream Disturbance	2.6D
Type of Disturbance	Stack Exit
Ideal Sampling Location	Yes
Correction Factors Applied	No
Total No. Points Sampled	12
Points/Traverse	6
Sampling Performed to Standard ¹	Yes

¹ AS 4323.1 Section 4.1

D = Diameters

5.0 Results

A summary of air emission test results is shown in **Table 4**. Detailed results along with gas stream properties during the testing period can be found in **Table 5**. Speciated Hazardous Substances (Metals) results are presented in **Table 6**. Emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atm pressure for comparison with regulatory limits.

Field sheets and final calculations recorded during the project are attached as **Appendix A**. Laboratory reports can be referred to in **Appendix B**.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Table 4	Shredder Baghouse Emission Results Summary, 13 December 2018
---------	--

Parameter	Emission Concentration (EPL Point 1)	Emission Concentration Limit
Total Particulate (TP) (mg/m ³)	44	100
Fine Particulate (PM ₁₀) (mg/m ³)	3.9	N/A
Lead (mg/m ³)	0.35	5
Mercury (mg/m ³)	0.00044	1
Total Hazardous Substances (Metals) (mg/m ³)	0.55	N/A

Results from testing conducted on EPL Point 1 on 13 December 2018 are below the regulatory limits listed in EPL 5345.

Table 5 Fine Particulate (PM_{10}), Total Particulate and Hazard	ious Substant	ce (metals) Res	uits, 15 December 2016
Sampling Conditions:			
Stack internal diameter at test location	760	mm	
Stack gas temperature (average)	33.5	°C	306.7 K
Stack pressure (average)	1010	hPa	
Stack gas velocity (average, stack conditions)	5.2	m/s	
Stack gas flowrate (stack conditions)	2.4	m³/s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	2.1	m³/s	
Fine Particulate (PM ₁₀) Testing			
Test Period	13:35	-	15:04
Fine Particulate (PM ₁₀) Mass	4.1	mg	
Gas Volume Sampled	1.04	m ³	
Fine Particulate (PM ₁₀) Emission* ¹	3.9	mg/m ³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	8.1	mg/s	
Regulatory Limit	N/A	mg/m ³	
Total Particulate Testing	·		
Test Period	13:35	-	15:04
Total Particulate Mass	43.5	mg	
Gas Volume Sampled	0.982	m ³	
Total Particulate Emission*1	44	mg/m ³	
Total Particulate Mass Emission Rate*2	91	mg/s	
Regulatory Limit	100	mg/m ³	
Hazardous Substances (Metals) Testing			
Test Period	13:35	-	15:04
Hazardous Substances (Metals) Mass	0.62	mg	
Gas Volume Sampled	1.13	m ³	
Hazardous Substances (Metals) Emission*1	0.55	mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate ^{*2}	1.1	mg/s	
Regulatory Limit	N/A	mg/m ³	
Moisture Content (%)	2.4		
Gas Density (dry at 1 atmosphere)	1.29	kg/m ³	
Dry Molecular Weight	28.8	g/g-mole	

Table 5 Fine Particulate (PM₁₀), Total Particulate and Hazardous Substance (Metals) Results, 13 December 2018

Notes *1 Emission concentration at Standard conditions of 0^oC, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 6 Hazardous Substances (Metals) Elemental Analysis Results, 13 December 2018

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00125	0.00111	0.000148	0.000131			0.0014	0.00124	0.00254
Arsenic	0.00034	0.000301	<0.0001	<0.0000885			0.00034	0.000301	0.000617
Beryllium	<0.0001	<0.0000885	<0.0001	<0.000885			<0.0001	<0.000885	<0.000181
Cadmium	0.00455	0.00403	<0.0001	<0.000885			0.0046	0.00407	0.00834
Chromium	0.0876	0.0776	0.00125	0.00111			0.089	0.0788	0.162
Cobalt	0.00133	0.00118	<0.0001	<0.000885			0.0013	0.00115	0.00236
Copper	0.0323	0.0286	0.00099	0.000876			0.033	0.0292	0.0599
Lead	0.404	0.358	0.00029	0.000257			0.404	0.358	0.734
Magnesium	0.219	0.194	<0.0029	<0.00257			0.22	0.195	0.4
Manganese	0.0554	0.049	0.00679	0.00601			0.062	0.0549	0.113
Mercury	0.0001	0.0000885	0.0000483	0.0000428	0.000351	0.000311	0.0005	0.000443	0.000908
Nickel	0.0565	0.05	0.00049	0.000434			0.057	0.0505	0.104
Selenium	0.00012	0.000106	<0.0001	<0.000885			0.00012	0.000106	0.000217
Thallium	<0.0001	<0.0000885	<0.0001	<0.000885			<0.0001	<0.000885	<0.000181
Tin	0.00193	0.00171	<0.0141	<0.0125			0.0019	0.00168	0.00344
Vanadium	<0.0097	<0.00859	<0.0086	<0.00761			<0.0001	<0.000885	<0.000181
Zinc	3.1	2.74	0.0058	0.00514			3.1	2.74	5.62
Total Hazardous Metals*	0.61	0.54	0.0090	0.0080	0.00035	0.00031	0.62	0.55	1.13
Total Metals	3.96	3.51	0.016	0.014			3.98	3.52	7.22

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

This page has been left blank intentionally.

Appendix A

Field Sheets (17 pages)

Appendix A Field Sheets (17 pages)

Q4AN(EV)-332-FM31

OneSteel Hexham

AECOM's Project Number: 60493017

Emission Source: Shredder Stack

Date Sampled: 13-Dec-18

ANALYTE(S)

Fine Particulate (PM10)

Total Particulate

Hazardous Substances (Metals)

NSW EPA OM - 5 NSW EPA TM - 15 NSW EPA TM - 12, 13 & 14

METHOD

Observations made during testing period:

Sampling Performed By:

Buddand

Dylan Turnbull

Sharn Crosdale

Brendan Schrader

Q4AN(EV)-332-FM31

STACK ANALYSIS - PRE-SAMPLING

Date:13-Dec-18Client:OneSteel HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

		Measurement/Obse	rvations		
Stack Inte	rnal Dimensions:				
Diameter 760mm OR Length Width Length/Width (mm) Equivalent Diameter N/Amm		Cross Sectional Area Minimum No. of sampling points=	a 0.45 m 12	2	
10 M	a maximum a h				
	rom sampling plane to sturbances:		Total No. of samplin	PM2.5/10=	12 12
Upstream	(m) = 5		sampled =	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
No. Diame				PM2.5/10=	2
	ostream Disturbance:	Fan Entry	No. of sampling poin		
Downstrea			traverse/port =		6
No. Diame				PM2.5/10=	6
	own Stream Disturbance	e: Stack Exit			
Position o	f each sampling point, fo	or each traverse:	Exclusion of any sar numbers - comment	And the second sec	
	А	В	PM10/2.5 A	PM2.5/1	10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot d	istances
1	33	3	33	3	
2	111	81	111	81	
3	225	195	225	195	Carlo
4	535	505	535	505	
5	649	619	649	619	
5 6 7	727	697	727	697	5
7					
8		()		1.1	
9					
10			Check of total points	against	
11			minimum, (yes/no) -	comments:	
12					
13					
14					
15			0		
16					
17					
18		04	A Care Law	1	
19			General Comments:	A	
20		A			
Signed:	Benchland	11	Checked:	wit	

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

1.40 %

Date:	13-Dec-18	
Client:	OneSteel Hexham	1
AECOM'	s Project No:	60493017
Stack/Du	ict Description:	Shredder Stack
Test 1:	Fine Particulate (F	PM10)
Test 2:	Total Particulate	
Test 3:	Hazardous Substa	ances (Metals)

Sampling time start:	13:35	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	13:35	0	20.9	0.0
2	13:36	0	20.9	0.0
3	13:37	0	20.9	0.0
4	13:38	0	20.9	0.0
5	13:39	0	20.9	0.0
6	13:40	0	20.9	0.0
7	13:41	0	20.9	0.0
8	13:42	0	20.9	0.0
	Averages:	0.0 ppr	n 20.9 %	0.0

Moisture content (M3): Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO2:	0.0 %,(dry)	O2:	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.0 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O:	1.40 %(=M2)	- 1.		
Therefore, stack gas density (GD) =		1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore, stack gas density (GD) =		1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

2.13 %

Date:13-Dec-18Client:OneSteel HexhamAECOM's Project No:60493017Stack/Duct Description:Shredder StackTest 1:Fine Particulate (PM10)Test 2:Total ParticulateTest 3:Hazardous Substances (Metals)

Sampling time start:	14:50	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	14:50	0	20.9	0.0
2	14:51	0	20.9	0.0
3	14:52	0	20.9	0.0
4	14:53	0	20.9	0.0
5	14:54	0	20.9	0.0
6	14:55	0	20.9	0.0
7	14:56	0	20.9	0.0
8	14:57	0	20.9	0.0
the state of the second	Averages:	0.0 ppm	20.9 %	0.0 %
Moisture content (M3):			20.9 %	0.0

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO2:	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.4 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.5 %,(wet)	
H ₂ O:	2.13 %(=M2)			
Therefore, stack gas density (GD) =		1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore, stack gas density (GD) =		1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Q4AN(EV)-332-FM31

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 13-Dec-18 Client: OneSteel Hexham AECOM's Project No: 60493017 Stack/Duct Description: Shredder Stack Test 1:Fine Particulate (PM10) Test 2:Total Particulate Test 3:Hazardous Substances (Metals)

12:40 Time : Barometric Pressure : 1010.5 hPa Page No. : 1 of 1 Pitot Correction Factor : 0.84 kg/m³ Sampling Port No: 1 to 2 Stack Gas Density: 1.28 (0 °C, Wet, 1 Atm) Pitot Tube Type : S Max. Distance Differential Sampling Position Max Temp. Max Temp. (Ts) Corrected Velocity from far wall Pressure No. °C K (Vs) m/s ΔP, kilo (mm) Pascals 1/1 3 0.021 33.0 306.2 5.1 1/2 81 0.019 33.0 306.2 4.8 1/3 33.0 306.2 4.8 195 0.019 1/4 33.0 306.2 505 0.021 5.1 1/5 619 0.021 33.0 306.2 5.1 1/6 697 0.020 33.0 306.2 4.9 2/1 3 0.024 33.0 306.2 5.4 2/2 81 0.025 33.0 306.2 5.5 2/3 195 0.026 33.0 306.2 5.6 2/4 505 0.027 33.0 306.2 5.8 2/5 619 0.025 33.0 306.2 5.5 2/6 697 0.026 33.0 306.2 5.6 Average 33.0 306.2 5.3

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -2.9 mm 1010.22 hPa

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

	13-Dec-18						
Client: One	Steel Hext	nam					
AECOM's Project	t No:		60493017				
Stack Description	No.:	Shredder Star	ck				
Sample Nozzle N	lo.:	Fine8		Sample Nozzle Are	a (An):	3.57	x 10 ⁻⁵ m ²
Sampling Port No	o.:	1 to 2		Thimble No:		T15	
Page No:		1 of 1		Blank thimble No:		0	
Leak Check (Pre	-Sampling	a)		Leak Check (Post	Sampling	1)	
Meter start:	514,7012	Meter finish:	514.7012	Meter start:	515.8898	Meter finish:	515.8898
Time start:	12:20	Time finish:	12:21	Time start:	15:04	Time finish:	15:05
Therefore, leakag	ge rate =	no leak	L/min	Therefore, leakage	rate =	no leak	L/min
(>0.1 l/min. is una	acceptable).		(>0.1 l/min. is unac	ceptable)		
Repeat:				Repeat:			
Comments:				Comments:			

1. No. 1. . .

Sampling Record Table

Barometric Pressure:	1011 hPa (s	start);	1011 hPa (finish)
Meter start:	514.7037	Time start:	13:35
Meter correction factor (GMf) :		1.0000	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:00	33	13.4	31.0	30.0		Yes
1/2	0:06:30	111	13.4	35.0	30.0		Yes
1/3	0:06:30	225	13.4	37.0	31.0		Yes
1/4	0:07:00	535	13.4	39.0	32.0		Yes
1/5	0:07:00	649	13.4	40.0	33.0		Yes
1/6	0:06:45	727	13.4	41.0	33.0		Yes
2/1	0:07:30	33	13.4	42.0	34.0		Yes
2/2	0:07:30	111	13.4	43.0	35.0		Yes
2/3	0:07:45	225	13.4	43.0	35.0		Yes
2/4	0:08:00	535	13.4	44.0	35.0		Yes
2/5	0:07:45	649	13.4	44.0	36.0		Yes
2/6	0:07:45	727	13.4	44.0	36.0		Yes
Averages		1		40.3	33.3	no result	

Q4AN(EV)-332-FM31

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date:	13-Dec-18							
Client: Or	eSteel Hex	ham						
AECOM's Proje	ct No:		60493017					
Stack Description	on No.:	Shredder Stac	k					
Sample Nozzle	No.:	S4		Sample Nozzle Ar	rea (An):	4.5	x 10 ⁻⁵ m ²	
Sampling Port N	lo.:	1 to 2		Thimble No:		T22		
Page No:		1 of 1		Blank thimble No:				
Leak Check (P	re-Samplin	(p)		Leak Check (Post Sampling)				
Meter start:	5472.4642	Meter finish:	5472.4642	Meter start:	5473.5964	Meter finish:	5473.5964	
Time start:	12:22	Time finish:	12:23	Time start:	15:06	Time finish:	15:07	
Therefore, leak	age rate =	no leak	L/min	Therefore, leakag	e rate =	no leak	L/min	
(>0.1 l/min. is u	nacceptable	e)		(>0.1 l/min. is una	cceptable)			

Repeat: Comments: Repeat: Comments:

hPa (finish)

Sampling Record Table

Barometric Pressure:	1011 hPa (start);		1011
Meter start:	5472.4662	Time start:	13:35
Meter correction factor (GM	f) :	0.9900	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:15	33	13.2	30.0	30.0		Yes
1/2	0:14:30	111	12.4	35.0	30.0		Yes
1/3	0:21:45	225	12.4	37.0	31.0	1	Yes
1/4	0:29:00	535	13.2	39.0	32.0		Yes
1/5	0:36:15	649	13.2	40.0	32.0		Yes
1/6	0:43:30	727	12.7	41.0	33.0		Yes
2/1	0:50:45	33	14.0	42.0	33.0		Yes
2/2	0:58:00	111	14.2	43.0	34.0		Yes
2/3	1:05:15	225	14.5	43.0	35.0	1	Yes
2/4	1:12:30	535	15.0	44.0	35.0		Yes
2/5	1:19:45	649	14.2	44.0	36.0	1	Yes
2/6	1:27:00	727	14.5	44.0	36.0		Yes
Averages				40.2	33.1	no result	

ISO-2 Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date: 13-Dec-18							
Client: OneSteel Hex	ham						
AECOM's Project No:		60493017					
Stack Description No .:	Shredder Stad	k					
Sample Nozzle No.:	G64		Sample Nozzle	e Area (An):	4.78	x 10 ⁻⁵ m ²	
Sampling Port No .:	1 to 2		Thimble No:		0		
Page No:	1 of 1		Blank thimble	No:			
Leak Check (Pre-Samplin	g)		Leak Check (Post Sampling	1)		
Meter start: 22146.3440	Meter finish:	22146.3440	Meter start:	22147.6306	Meter finish:	22147.6306	
Time start: 12:24	Time finish:	12:25	Time start:	15:08	Time finish:	15:09	
Therefore, leakage rate =	no leak	L/min	Therefore, lea	kage rate =	no leak	L/min	
(>0.1 l/min. is unacceptable	2)		(>0.1 l/min. is	unacceptable)			
Repeat:			Repeat:				
Comments:			Comments:				

Sampling Record Table

Barometric Pressure:	1011 hPa (s	tart);	1011 hPa (finish)
Meter start:	22146.3462	Time start:	13:35
Meter correction factor (G	SMf) -	1 0000	

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:07:15	33	14.2	29.0	29.0		Yes
1/2	0:14:30	111	13.3	32.0	29.0		Yes
1/3	0:21:45	225	13.3	34.0	30.0		Yes
1/4	0:29:00	535	14.2	36.0	31.0		Yes
1/5	0:36:15	649	14.2	38.0	32.0		Yes
1/6	0:43:30	727	13.6	40.0	33.0		Yes
2/1	0:50:45	33	15.0	41.0	34.0		Yes
2/2	0:58:00	111	15.3	42.0	35.0	4	Yes
2/3	1:05:15	225	15.5	42.0	36.0		Yes
2/4	1:12:30	535	16.1	43.0	37.0	1.00	Yes
2/5	1:19:45	649	15.3	43.0	37.0		Yes
2/6	1:27:00	727	15.5	44.0	38.0		Yes
	-						
		1		2			
Averages			1	38.7	33.4	no result	

ISO-3 Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

Q4AN(EV)-332-FM31

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

 Date:
 13-Dec-18

 Client:
 OneSteel Hexham

 AECOM's Project No:
 60493017

 Stack/Duct Description:
 Shredder Stack

 Test 1:Fine Particulate (PM10)
 Test 2:Total Particulate

 Test 3:Hazardous Substances (Metals)
 Substances (Metals)

Page No. : Sampling Port No: <u>Pitot Tube Type :</u> Sampling Position No.	1 of 1 1 to 2 S Distance from far wall	Pitot Correction Stack Gas De Max. Differential		0.84 1.28	kg/m ³
Pitot Tube Type : Sampling Position No.	S Distance from far wall	Max.	ensity:	1.28	
Sampling Position No.	Distance from far wall				10 00 111 1 1 1 1
No.	from far wall				(0 °C, Wet, 1 Atm)
	(mm)	the second s	Max Temp. °C	Max Temp. (Ts) K	(Vs) m/s
1/1	3	0.022	34.0	307,2	5.2
1/2	81	0.020	34.0	307.2	4.9
1/3	195	0.019	34.0	307.2	4.8
1/4	505	0.019	34.0	307.2	4.8
1/5	619	0.021	34.0	307.2	5.1
1/6	697	0.021	34.0	307.2	5.1
	1				
2/1	3	0.023	34.0	307.2	5.3
2/2	81	0.023	34.0	307.2	5.3
2/3	195	0.024	34.0	307.2	5.4
2/4	505	0.026	34.0	307.2	5.6
2/5	619	0.025	34.0	307.2	5.5
2/6	697	0.024	34.0	307.2	5.4
1. A		Long Street Stre			
		1.1			
	1 C	1		1	
		(2	
				· · · · · · · · · · · · · · · · · · ·	2
					J
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
1					
					-
				1 m m m m m m m m m m m m m m m m m m m	
		1		A	1
	-	(1	
		-		A second second	
	-		-		
			í		
		1		1	1
		1			1.1
		E		1	
)		1 m	
		1			
Average			34.0	307.2	5.2

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -2.7 mm 1010.24 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:	13-Dec-18		Client:	OneSteel He	exham
AECOM's P	Project No:	60493017	Stack/Duct	Description:	Shredder Stack

	Particulate Metals Results	Gaseous Metals Results	Oxidi	sable Mercury	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCI (mg) (If Required) (5C)
Antimony	0.00125	0.000148	000000000000	000000000000	(http://www.
Arsenic	0.00034	< 0.0001			
Beryllium	< 0.0001	< 0.0001	101110-00000000	20100000000000	
Cadmium	0.00455	< 0.0001	0.0000000000	0000000000	Contraction of the second s
Chromium	0.0876	0.00125		000000000000000000000000000000000000000	
Cobalt	0.00133	< 0.0001	100000000000000000000000000000000000000	200000000000000000000000000000000000000	
Copper	0.0323	0.00099	000000000000		
Lead	0.404	0.00029	100000000000000000000000000000000000000		2010000000000
Magnesium	0.219	< 0.0029	100000000000000000000000000000000000000	100000000000000	15656699559929
Manganese	0.0554	0.00679			
Mercury	0.0001	0.0000483	< 0.0001	0.000351	< 0.0001
Nickel	0.0565	0.00049			
Selenium	0.00012	< 0.0001			111111111111111111
Thallium	< 0.0001	< 0.0001		0.00000000000000	000000000000000000000000000000000000000
Tin	0.00193	<0.0141			
Vanadium	<0.0097	<0.0086			411111111111111111111
Zinc	3.1	0.0058	0.0100000000000		

01----

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

10 0- 10

Dete

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m ³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m ³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m ³)	Total (mg)	Total (mg/m ³)	Mass Emission Rate (mg/s)
Antimony	0.00125	0.00111	0.000148	0.000131			0.0014	0.00124	0.00254
Arsenic	0.00034	0.000301	< 0.0001	<0.0000885	0000000000000	0100100000000	0.00034	0.000301	0.000617
Beryllium	< 0.0001	<0.0000885	< 0.0001	<0.0000885			< 0.0001	<0.0000885	< 0.000181
Cadmium	0.00455	0.00403	< 0.0001	<0.0000885	120000000000000000000000000000000000000	200000000000000000000000000000000000000	0.0046	0.00407	0.00834
Chromium	0.0876	0.0776	0.00125	0.00111	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.089	0.0788	0.162
Cobalt	0.00133	0.00118	< 0.0001	<0.0000885			0.0013	0.00115	0.00236
Copper	0.0323	0.0286	0.00099	0.000876		201112112223	0.033	0.0292	0.0599
Lead	0.404	0.358	0.00029	0.000257		250000000000000000000000000000000000000	0.404	0.358	0.734
Magnesium	0.219	0.194	< 0.0029	<0.00257		0111201002000	0.22	0.195	0.4
Manganese	0.0554	0.049	0.00679	0.00601		2000000000	0.062	0.0549	0.113
Mercury	0.0001	0.0000885	0.0000483	0.0000428	0.000351	0.000311	0.0005	0.000443	0.000908
Nickel	0.0565	0.05	0.00049	0.000434	800000000000	0.0000000000000000000000000000000000000	0.057	0.0505	0.104
Selenium	0.00012	0.000106	< 0.0001	<0.0000885	10010000000000	1	0.00012	0.000106	0.000217
Thallium	< 0.0001	< 0.0000885	< 0.0001	<0.0000885	based of the set	Renderationald	< 0.0001	<0.0000885	< 0.000181
Tin	0.00193	0.00171	< 0.0141	< 0.0125	letter and the state		0.0019	0.00168	0.00344
Vanadium	< 0.0097	< 0.00859	< 0.0086	< 0.00761			< 0.0001	<0.0000885	< 0.000181
Zinc	3.1	2.74	0.0058	0.00514	000000000000000000000000000000000000000	NUMBER	3.1	2.74	5.62
Total Hazardous Metals*	0.61	0.54	0.0090	0.0080	0.00035	0.00031	0.62	0.55	1,13
Total Metals	3.96	3.51	0.016	0.014			3.98	3.52	7.22

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 13-Dec AECOM's Project No:		Client: 0493017 Stack/D	OneSteel Hexham	nredder Stack
ALCOMS Project No.	00	1493017 SIACKD	uci Description. Si	ILEUGEL STOCK
(A) Sample gas volun	ne at standard conditio	ns		
Metered volume (MVs	,):	1.1843 m ³	Average barometri	c
Average gas meter te	mp. (T _{M.2}):	36.8 °C	pressure (P _{BARO})	1010.5 hPa
		310.0 K	Average pressure meter ($P_{M,2}$)	at 1010.50 hPa
Sample gas volume (I	MV ₄); (0°C, dry			
gas, 1 atm pressure):		1.0409 m ³		
(B) PM10 concentration	on at standard conditio	ns		
Blank thimble No .:	0		Blank weight:	9
Thimble No. used:	T15		PM10 Weight	0.0041 g
Final PM10 Weight (N		0.00410 g		
PM10 Concentration	(C1):	=M _{p1} /MN	/4=	0.0039 g/m ³ (0°C, dry gas, 1atm pressure)
		;and C ₂	÷	3.9 mg/m ³ (0°C, dry gas,
CO ₂ Basis	12 %			1atm pressure)
Average CO ₂ %:	0.0 %			
Therefore, Cc:	=	C _a x 12/CO ₂ % =		n ³ (0°C, dry gas, 1atm
			pre	essure, 12% CO ₂)
		;and C _{c1})/m ³ (0⁰C, dry gas, 1atm essure, 12% CO₂)
O ₂ Basis	7 %			
Average O ₂ %:	20.9 %			
Therefore, C _b :	=C _a x (21 - O _{2ref} %)/(21 - O _{2mea} %)	0.55 g/r	n^3 (0°C, dry gas, 1atm pressure, 7% O ₂)
		;and C_{b1}	= 550 mg	p/m^3 (0°C, dry gas, 1atm pressure 7% O ₂)
(C) Moisture content Silica Gel Number:	112			/ 78 O ₂)
V _v =		roport)	V -	7 mL (=grams)
	5 g (from laboratory		V _w =	(recorded on
	our Condensed (V _{wc(std}			Laboratory Form
	our Condensed (V _{wsg(sl}		67	108)
Therefore, B _{ws} =	the second se	<u>+V_{wsg(std)})</u> sg(std)+V _{m(std)})		
P -	1 51 0/			

B_{ws} = 1.51 %

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL	CALCULATIONS CONTINUED
Fine Particulate (PM10)	

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:	1.28 kg/m ³ (from Laboratory Form 107)		
(ii) Re-calculated gas density based on moisture content in (c):	1.28 kg/m ³ (0°C, wet, 1 atm pressure) 1.29 kg/m ³ (0°C, dry, 1 atm pressure)		
(iii) Gas density at stack conditions =	(ii) x <u>(273.2)</u> x <u>(Ps)</u> (273.2+Ts) (1013.25)		
#	1.137 kg/m ³ (stack conditions, wet)		
(E) Gas Velocities			
(i) Average of pre-sampling velocities:	5.27 m/s		
(ii) Average of post-sampling velocities:	5.20 m/s		
(iii) Average of while-sampling velocities:	N/A m/s		

(iv) Overall average of pre-sampling and post-
sampling velocities (Vs):5.23 m/s (stack conditions, wet)
N/A m/s (stack conditions, wet)(Note: (Vs) is from all individual data, not from (i)
and (ii) alone.)5.23 m/s (stack conditions, wet)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =		Vs x A =		2.37 m	³ /s (stack condition	s)
Qstd =	Qstack x	<u>Ps</u> x (Pstd)	<u>(Tstd)</u> x (Ts)	<u>(100 - B_w)</u> 100		
Qstd =	2	.1 m³/s (0°C, c	dry gas, 1 atm	pressure)		
2012210	Semme GO					

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.0081	g/s (0°C, dry gas, 1 atm pressure		
	=	8.1	mg/s (0°C, dry gas, 1 atm pressure)	

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 13-De AECOM's Project No		60493017	Client: Stack/Duc	OneSteel Hexham t Description: Shredder	Stack
(A) Sample gas volu	me at standard con	ditions			
Metered volume (M)		1.1163		Average barometric pressure (P _{BARO})	
Average gas meter t	emp. (1 _{M,2}):	36,6			1011 hPa
		309.8	к	Average pressure at meter $(P_{M,2})$	1010.50 hPa
Sample gas volume	(MV ₄); (0°C, dry				
gas, 1 atm pressure):	0.9817	m ³		
(B) Total Particulate	concentration at sta	andard condit	tions		
Blank thimble No.:				Blank weight:	g
Thimble No. used:	T22	0.04050		Total Particulate Weight	0.0435 g
Final Total Particulat		0.04350	9 =M _{p1} /MV ₄ =	- 0.04	4 g/m ³ (0°C, dry gas,
Total Particulate Co	ncentration (C1);		-w _{p1} /w v ₄ -	- 0.04	1atm pressure)
			;and C ₂ =	4	⁴ mg/m ³ (0°C, dry gas,
CO ₂ Basis	12 %				1atm pressure)
Average CO ₂ %:	0.	0 %			
Therefore, C _c :		= C _a x 12/0	CO ₂ % =	0.044 g/m ³ (0°C pressure,	, dry gas, 1atm 12% CO ₂)
			;and C _{c1} =		C, dry gas, 1atm 12% CO ₂)
O ₂ Basis	7 %				
Average O ₂ %:	20.	9 %			
Therefore, C _b :	=C _a x (21 - C	0 _{2ref} %)/(21 - C) _{2mea} %)	6.2 g/m ³ (0°C 7%	, dry gas, 1atm pressure, O ₂)
			;and C _{b1} =		°C, dry gas, 1atm pressure, O ₂)
(C) Moisture content Silica Gel Number:	t 19				
V _v =	8.4 g (from labor	atory report)		V _w =	8 mL (=grams)
Volume of Water Va	and the second	1	0.0107		(recorded on
Volume of Water Va			0.0112		Laboratory Form 108)
Therefore, B _{ws} =		wsg(std) wc(std)+Vwsg(std)			1997
		d)+V _{wsg(std)} +V _n			
		0 %			

B_{ws} = 2.18 %

ANZ Emission Measurement Calculations Spreadsheet STACK ANALYSIS - FINAL CALCULATIONS CONTINUED Total Particulate (D) Gas Composition and Density (Re-calculation) (i) Initial gas dessitu for exampling 128 kg/m³ (from Laboratory Form 107)

(i) Initial gas density for sar	mpling:		1.28	kg/m ³ (from La	boratory Form	n 107)
(ii) Re-calculated gas dens content in (c):	ity based on mo	isture		kg/m ³ (0°C, we kg/m ³ (0°C, dry		
(iii) Gas density at stack cc	inditions =			(ii) x	(<u>273.2)</u> x (273.2+Ts)	<u>(Ps)</u> (1013.25)
		=	1.146	kg/m ³ (stack co	onditions, wet)
(E) Gas Velocities						
(I) Average of pre-sampling	y velocities:		5.27	m/s		
(ii) Average of post-sampli	ng velocities:		5.20	m/s		
(iii) Average of while-samp	ling velocities:		N/A	m/s		
(iv) Overall average of pre- sampling velocities (Vs): (Note: (Vs) is from all indiv and (ii) alone.)				m/s (stack con m/s (stack con		
(F) Volumetric Flowrates (F	Reference Metho	od US-EP	A Method 2	, NSW-EPA TM	1-2)	
Qstack =	Vs x A =		2.37	m ³ /s (stack cor	nditions)	
CTUDE CONTRACTOR CONTRACTOR		<u>Tstd)</u> x (Ts)	(<u>100 - B</u> _w) 100			
Qstd = 2.1	m ³ /s (0°C, dry ga	as, 1 atm	pressure)			
(G) Mass Emission Rate						
Rm = C _{1a} x Qstd =	0.091 g	g/s (0°C, o	try gas, 1 at	m pressure)	

mg/s (0°C, dry gas, 1 atm pressure)

Sample 2 Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31) Revision 2 May 28, 2015

91

=

Q4AN(EV)-332-FM31

Q4AN(EV)-332-FM31

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals) (Calculations performed in accordance with relevant test method as defined on cover page)

Date: 13-D AECOM's Project N	ec-18 o:	60493017	Client: Stack/Duc	OneSteel Hext t Description:	ham Shredder Stack
(A) Sample gas volu	ume at standard co	onditions			
Metered volume (M	V ₃):	1.2818	m ³	Average baron	netric
Average gas meter	temp. (T _{M.2}):	36.0	°C	pressure (P _{BAR}	ao) 1010.5 hPa
		309.2	к	Average press (P _{M,2})	
Sample gas volume	(MV ₄); (0°C, dry g	as,			
1 atm pressure):	a bel de ab entre e	1.1295	m ³		
(B) Metals concentra	ation at standard o	conditions			
Blank thimble No.:				Blank weight:	g
Thimble No. used: Final Metals Weight	(Mot)-	0 0.00062	0	Metals Weight	0.000622 g
Metals Concentratio		0.00002	g =M _{p1} /MV ₄ =	1.	0.00055 g/m ³ (0°C, dry gas, 1atm pressure)
	4.0		;and C ₂ =		0.55 mg/m ³ (0°C, dry gas,
CO ₂ Basis Average CO ₂ %:	12 %	0.0 %			1atm pressure)
Therefore, C _c :		= C _a x 12/0	CO ₂ % =	0.00055	5 g/m ³ (0°C, dry gas, 1atm pressure, 12% CO ₂)
			;and C _{c1} =	0.55	5 mg/m ³ (0°C, dry gas, 1atm pressure, 12% CO ₂)
O ₂ Basis	7 %				pressure, 12/0 002)
Average O ₂ %:		0.9 %			
Therefore, C _b :	=C _a x (21 -	O _{2ref} %)/(21 - C) _{2mea} %)	0.077	' g/m ³ (0°C, dry gas, 1atm pressure, 7% O ₂)
			;and C _{b1} =	77	⁷ mg/m ³ (0°C, dry gas, 1atm pressur 7% O ₂)
(C) Moisture conten Silica Gel Number:	t 26				
V _v =	11.5 g (from labo	pratory report)		V _w =	12 mL (=grams)
Volume of Water Va			0.0160		(recorded on Laboratory Form
Volume of Water Va	pour Condensed	(V _{wsg(std)}) =	0.0154		108)
Therefore, B _{ws} =		V _{wn(std)} +V _{wsg(std)} std)+V _{wsg(std)} +V _m			2004
		2.4			

B_{ws} = _____ 2.70 %

Q4AN(EV)-332-FM31

Emission Measurement Calculations Spreadsheet

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Hazardous Substances (Metals)

(D) Gas Composition and Density (Re-calculation) 1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling: (ii) Re-calculated gas density based on moisture 1.29 kg/m³ (0°C, wet, 1 atm pressure) content in (c): 1.29 kg/m³ (0°C, dry, 1 atm pressure) (iii) Gas density at stack conditions = (ii) x (273.2) x (Ps)(273.2+Ts) (1013.25) 1.146 kg/m³ (stack conditions, wet) (E) Gas Velocities 5.27 m/s (i) Average of pre-sampling velocities: 5.20 m/s (ii) Average of post-sampling velocities: N/A m/s (iii) Average of while-sampling velocities: (iv) Overall average of pre-sampling and post-5.23 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet) (Note: (Vs) is from all individual data, not from (i) and (ii) alone.) (F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2) 2.37 m³/s (stack conditions) Qstack = Vs x A = Ps Qstd = Qstack x х (Tstd) × (100 - B_w) (Pstd) (Ts)100 2.1 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

Rm =	C _{1a} x Qstd =	0.0011	g/s (0°C, dry gas, 1 atm pressure)
		1.1	mg/s (0°C, dry gas, 1 atm pressure)

Sample 3 Emission Measurement Calculations Spreadsheet (Q4AN(EV)-332-FM31)

Revision 2 May 28, 2015

AECOM

ANZ Emission Measurement Calculations Spreadsheet

Q4AN(EV)-332-FM31

EMISSION MONITORING RESULTS, ONESTEEL HEXHA 13-Dec-18 FINE PARTICULATE (F TOTAL PARTICULA HAZARDOUS SUBSTANCES	M PM10) TE	
Sampling Conditions: Stack internal diameter at test location	760 mm	
	33.5 °C	000 7 K
Stack gas temperature (average) Stack pressure (average)	1010 hPa	306.7 K
Stack gas velocity (average, stack conditions)	5.2 m/s	
Stack gas flowrate (stack conditions)	2.4 m ³ /s	
Stack gas flowrate (o ⁰ C, dry gas, 1 atm pressure)	2.1 m ³ /s	
Fine Particulate (PM10) Testing	2.1 11/5	
Test Period	13:35 -	15:04
Fine Particulate (PM10) Mass	4.1 mg	
Gas Volume Sampled	1.04 m ³	
Fine Particulate (PM10) Emission*1	3.9 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	8.1 mg/s	
Regulatory Limit	N/A mg/m ³	
Total Particulate Testing		0.00
Test Period	13:35 -	15:04
Total Particulate Mass	43.5 mg	
Gas Volume Sampled	0.982 m ³	
Total Particulate Emission*1	44 mg/m ³	
Total Particulate Mass Emission Rate*2	91 mg/s	
Regulatory Limit	100 mg/m ³	
Hazardous Substances (Metals) Testing	10.05	45.04
Test Period Hazardous Substances (Metals) Mass	13:35 - 0.62 mg	15:04
Gas Volume Sampled	1.13 m ³	
	0.55 mg/m ³	
Hazardous Substances (Metals) Emission*1 Hazardous Substances (Metals) Mass Emission Rate*2	1.1 mg/s	
Regulatory Limit	N/A mg/m ³	
Moisture Content (%)	2.4	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

*2 Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Results (8 pages)

Appendix B Laboratory Results (8 pages)

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

T15	Thimble	14		(0.0041
Гhimble ID		Volume	mL)	Partic	Total ulate Matter (g)
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u>	FILE		
Description :	Stack Emission Samples Received: 14-Dec-18	<u>Date :</u>	21-D	ec-18	
<u>Origin:</u> Project:	AECOM - Newcastle 60493017	Report :	1762	6-0-P	Page 1 of
	and the second				

Thimble

T22

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing Reported By: M. Canflett

0.0435

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2 Refer Form F422 - Measurement Uncertainty

Michael Campbell - Director

Note : Sampled by Client

Steel River Testing

5/11 McIntosh Drive, Mayfield West, NSW 2304 Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

<u>Origin:</u> Project:	AECOM - Newcastle 60493017	Report :	17626-0-M	Page 1 of 1
Description :	Stack Emission Samples Received: 14-Dec-18	<u>Date :</u>	21-Dec-18	
<u>Report To :</u>	Cye Buckland 17 Warabrook Blvd, Warabrook NSW 2304	<u>Copy to:</u> 4	FILE	
Jar ID		Moisture (g)		
112		5.0		
D19		8.4		

D26 11.5

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025 - Testing

Reported By:

Michael Campbell - Director

lan

leu

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301 Refer Form F422 - Measurement Uncertainty

CLIENT DETAILS -LABORATORY DETAILS Contact Cye Buckland Adam Atkinson Manager Client AECOM Australia Pty Ltd SGS Melbourne EH&S Laboratory 17 Warabrook Boulevard Address 10/585 Blackburn Road Address Warabrook Notting Hill Victoria 3168 SYDNEY NSW 2304 02 8295 3600 Telephone Telephone +61395743200 02 8934 0001 Facsimile Facsimile +61395743399 Email cye.buckland@aecom.com Email Au.SampleReceipt.Melbourne@sgs.com Project (Not specified) SGS Reference ME309136 R0 Order Number 60493017/3.1 19 Dec 2018 Date Received 12 02 Jan 2019 Samples Date Reported

COMMENTS .

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(14420).

SIGNATORIES

MING

Weiming Dai Inorganic Supervisor

La

Ryan Zhang Team Leader

SGS Australia Ply Lld ABN 44 000 964 278

Environment, Health and Safety Bldg 10,

Bldg 10, 585 Blackburn Rd Notting Hill VIC 3168

t +61 3 9574 3200 Australia f +61 3 9574 3399

www.sgs.com.au

ME309136 R0

and the star	S	nple Number ample Matrix Sample Date iample Name	ME309136,001 Filter 12 Dec 2018 Metals 1	ME309136,002 Filter 12 Dec 2018 Metals 12	ME309136,003 Impinger 12 Dec 2018 Metals 3	ME309136,004 Impinger 12 Dec 2018 Metals 4
Parameter	Units	LOR	1.1		distant.	
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA2	9_FILT Tes	sted: 24/12/2018			
Sb	µg total	0.05	0.20	<0.05		-
As	µg total	0.05	0.69	0.65	*	-
Be	µg total	0.05	<0.05	<0.05	+	
Cd	µg total	0.05	2.7	<0.05	-	-
Cr	µg total	0.05	86	2.1	1÷	
Co	µg total	0.05	0.48	<0.05	÷	-
Cu	µg total	0.05	6.0	0.49	-	-
Pb	µg total	0.05	25	0.72	-	
Mg	µg total	0.05	370	320	÷	+
Mn	µg total	0.05	15 .	1.3	-	
Hg	µg total	0.05	0.16	0.06	-	+
Ni	µg total	0.05	51	0.25	-	
Se	µg total	0.05	0.17	<0.05		
Π	µg total	0.05	<0.05	<0.05	-	÷.
Sn	µg total	0.05	0.89	0.16	*	
v	µg total	0.25	3.6	4.7		+
Zn	µg total	0.05	7400	5800	- A	÷
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total)	Method: EPA	29_METIMP	Tested: 28/12	/2018		
Sb	µg total	0,1	-	-	1.1	0.2
As	µg total	0.1	· ·		0.3	<0.1

As	µg total	0.1	-		0.3	<0.1
Be	µg total	0.1		8	<0.1	<0.1
Cd	µg total	0.1			1.9	<0.1
Cr	µg total	0.1	14 C	÷	3.7	1.3
Co	µg total	0.1	-		0.9	<0.1
Cu	µg total	0.1	+		27	1.3
Pb	µg total	0.1		*	380	0.6
Mg	µg total	0.1			170	2.9
Mn	µg total	0.1	-	÷	42	7.1
Hg	µg total	0.1		18 - C	<0.1	0.1
Ni	µg total	0.1			5.9	0.8
Se	µg total	0.1	-		<0.1	<0.1
Π	µg total	0.1			<0.1	<0.1
Sn	µg total	0.1	4	÷	1.3	13
v	µg total	0.1	-	-	2.5	5.4
Zn	µg total	0.1		•	1500	9.0
Sample Volume*	mL	1.12			98	310

ME309136 R0

		imple Number Sample Matrix Sample Date Sample Name	ME309136,005 Impinger 12 Dec 2018 Metals 8A	ME309136,006 Impinger 12 Dec 2018 Metals 9	ME309136.007 Impinger 12 Dec 2018 Metals 5A	ME309136,008 Impinger 12 Dec 2018 Metals 5C
Parameter	Units	LOR	in more			_
Metals in Filters M29 ETC MA-1400.FL.M29.02 USEPA M29	Method: EPA	29_FILT Tes	sted: 24/12/2018			
Sb	µg total	0.05			-	
As	µg total	0.05	-			
Be	µg total	0.05		. 7		-
Cd	µg total	0.05		*	-	•
Cr	µg total	0.05	-			-
Co	µg total	0.05			•	-
Cu	µg total	0.05	÷ .	-	-	-
Pb	µg total	0.05			-	-
Mg	µg total	0.05	-	-		
Mn	µg total	0.05				
Hg	µg total	0.05		-	-	-
Ni	µg total	0.05	-	-		-
Se	µg total	0.05	-	-		-
П	µg total	0.05				-
Sn	µg total	0.05		-	-	
v	µg total	0.25	4	-	1	
Zn	µg total	0.05	+			
Metals in Impingers M29 ETC MA-1400.IMP.M29.06 (ug total) Method: EP/	A29_METIMP	Tested: 24/12/;	2018		
Sb	µg total	0.1	<0.1	<0.1	•	•
As	µg total	0.1	<0.1	<0.1	-	

Sample Volume*	mL		300	210	100	240
n	µg total	0.1	2.0	1.1		
/	µg total	0.1	5.0	3.6	-	
Sn	µg total	0.1	0.1	14	-	
п	µg total	0.1	<0.1	<0.1	-	
Se	µg total	0.1	<0.1	<0.1	-	
Ni	µg total	0.1	0.2	0.1	-	-
Hg ·	µg total	0.1	<0.1	<0.1	<0.1	<0.1
Mn	µg total	0.1	0.3	<0.1		
Иg	µg total	0.1	1.5	1.4	+	-
Pb	µg total	0.1	0.2	0.1		
Cu	µg total	0.1	0.2	0.1	+	
Co	µg total	0.1	<0.1	<0.1	÷	-
Cr	µg total	0.1	<0.1	<0.1	-	-
Cd	µg total	0.1	<0.1	0.1	-	-
Be	µg total	0.1	<0.1	<0.1	-	
As	µg total	0.1	<0.1	<0.1	-	
Sb	µg total	0.1	<0.1	<0.1		•

.

ME309136 R0

1	5	ample Number Sample Matrix Sample Date Sample Name	ME309136,009 Impinger 12 Dec 2018 Metals 8B	ME309136.010 Impinger 12 Dec 2018 Metals 11	ME309136.011 KMnO4 12 Dec 2018 Metals 5B	ME309136.012 KMnO4 12 Dec 2018 Metals 10
Parameter	Units	LOR		1000		
Metals in Filters M29 ETC MA-1400.FL.M29.02 U	JSEPA M29 Method: EPA	A29_FILT Te	sted: 24/12/2018			
Sb	µg total	0.05	-	-		
As	µg total	0.05			· · · · ·	-
Be	µg total	0.05	-	+	(÷1)	÷
Cd	µg total	0.05			•	-
Cr	µg total	0.05		-	19	-
Co	µg total	0.05	-		-	
Cu	µg total	0.05		•		
Pb	µg total	0.05			- (+) - (-) -	-
Mg	µg total	0.05	· ·		7-	
Mn	µg total	0.05	-	•	•	
Hg	µg total	0.05	*			-
Ni	µg total	0.05				-
Se	µg total	0.05	-	-	· · · · · · · · · · · · · · · · · · ·	
π	µg total	0.05			1	•
Sn	µg total	0.05			7	•
v	µg total	0.25			-	•
Zn	µg total	0.05		*		-
Metals in Impingers M29 ETC MA-1400.IMP.M29		PA29_METIMP	Tested: 24/12/			
Sb	µg total	0.1				
As	µg total	0.1	-		-	
Be	µg total	0,1	-			-
Cd	µg total	0.1			-	
Cr	µg total	0.1	ć		-	
Co	µg total	0.1			-	
Cu	µg total	0.1	-			
Pb	µg total	0.1	-	-		-

Sample Volume*	mL	-	100	260	390	100
Zn	µg total	0.1	•	-		· ·
v	µg total	0.1		•		•
Sn	µg total	0.1	•		•	•
π/	µg total	0.1		•		
Se	µg total	0.1		-	•	
Ni	µg total	0.1	-			
Hg	µg total	0.1	<0.1	<0.1	0.4	<0.1
Mn	µg total	0.1	-	-	•1	
Mg	µg total	0.1	-	•		-1
Pb	µg total	0.1	-		. • *	-
Cu	µg total	0.1	-	-		-
Co	µg total	0.1	-	+	-	-
Cr	µg total	0.1	-	-	-	

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Metals in Fillers M29 ETC MA-1400.FL,M29.02 USEPA M29 Method: EPA29_FILT

Parámeter	QC Reference	Units	LOR	МВ	LCS %Recovery
Sb	LB024415	µg total	0.05	<0.05	110%
As	LB024415	µg total	0.05	<0.05	109%
Be	LB024415	µg total	0.05	<0.05	107%
Cd	LB024415	µg total	0.05	<0.05	106%
Cr	LB024415	µg total	0.05	<0.05	107%
Co	LB024415	µg total	0.05	<0.05	112%
Cu	LB024415	µg total	0.05	<0.05	105%
Pb	LB024415	µg total	0.05	<0.05	107%
Mg	LB024415	µg total	0.05	<0.05	109%
Mn	LB024415	µg total	0.05	<0.05	96%
Hg	LB024415	µg total	0.05	<0.05	108%
Ni	LB024415	µg total	0.05	<0.05	105%
Se	LB024415	µg total	0.05	<0.05	103%
π	LB024415	µg total	0.05	<0.05	108%
Sn	LB024415	µg total	0.05	<0.05	1 105%
v	LB024415	µg total	0.25	<0.25	107%
Zn	LB024415	µg total	0.05	<0.05	97%

Metals in Impingers M20 ETC MA-1400.(MP.M20.06 (ug total) Method: EPA26_METIMP

Parameter	RC Reference	Units	LOR	MB	LCS %Recovery
Sb	LB024416	µg total	0.1	<0.1	111%
As	LB024416	µg total	0.1	<0.1	113%
Be	LB024416	µg total	0,1	<0.1	104%
Cd	LB024416	µg total	0,1	<0.1	107%
Cr	LB024416	µg total	0,1	<0.1	110%
Co	LB024416	µg total	0.1	<0.1	120%
Cu	LB024416	µg total	0.1	<0.1	108%
Pb	LB024416	µg total	0.1	<0.1	112%
Mg	LB024416	µg total	0.1	<0.1	109%
Mn	LB024416	µg total	0,1	<0.1	99%
Hg	LB024416	µg total	0.1	<0.1	1
Nī	LB024416	µg total	0,1	<0.1	110%
Se	LB024416	µg total	0.1	<0.1	107%
π	LB024416	µg total	0.1	<0.1	114%
Sn	LB024416	µg total	0.1	<0.1	107%
v	LB024416	µg total	0.1	<0.1	111%
Zn	LB024416	µg total	0.1	<0.1	100%
Sample Volume*	LB024416	mL		100	NA

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
EPA 29	Analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA 3051A, USEPA M29, and USEPA 6020A. , Filters are digested using the appropriate sample preparation methods. A representative sample is extracted in concentrated acid using microwave heating by the CEM-MarsXPress (with Built-in USEPA method) Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling, the vessel contents are diluted with DI water, then filtered/settled/centrifuged and analysed by ICP MS.
EPA29	This method covers the analysis of acid-leachable metals by Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). This method is based on USEPA M29, USEPA 3015A and USEPA 6020A. Prior to analysis, samples are be solubilised or digested using the appropriate sample preparation methods.

FOOTNOTES

L

IS	Insufficient sample for analysis.	LOR	Limit of Reporting	
INR	Sample listed, but not received.	11	Raised or Lowered Limit of Reporting	
	NATA accreditation does not cover the	QFH	QC result is above the upper tolerance	
	performance of this service.	QFL	QC result is below the lower tolerance	
**	Indicative data, theoretical holding time exceeded.	-	The sample was not analysed for this analyte	
		NVL	Not Validated	

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity;

- a. 1 Bg is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20OA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law

This report must not be reproduced, except in full.

End of Report

17 Warabrook Boulevard, Warabrook, NSW 2304 PO Box 73 Hunter Region MC NSW 2310 T +61 2 4911 4900 F +61 2 4911 4999

www.aecom.com