

SENSE 600® Column Fitments

Column fitments produced from SENSE 600° reinforcing bar offer the following benefits:

- 🖇 🛛 a more sustainable solution
- S CodeMark certification for easy substitution
- 🖇 lighter and easier to handle

SENSE 600[®] is the future of sustainable steel. It means lower Scope 3 emissions without reinventing your processes. SENSE 600[®] is InfraBuild Steel's new range of 600 MPa grade, Class N (600N) bars produced in diameters with equivalent load capacity to its 500 MPa range of bars.

Column fitments produced from SENSE 600[®] bars with its higher strength and smaller diameter compared with 500 MPa bars is a more sustainable option with savings of up to 16.7 per cent in raw materials. Furthermore, the 100 per cent electric arc furnace steel making route, which uses only scrap steel for feed, results in up to a 35 per cent reduction in embodied carbon when used in place of our equivalent load capacity 500 MPa bar.

We make it easy – you can use your existing software for future designs, or our substitution table which is part of the SENSE 600° CodeMark certification. The CodeMark means that SENSE 600° column fitments can be substituted for 500 MPa fitments and will comply with the National Construction Code (NCC), if the 500 MPa fitments complied, without any calculation. No additional design work is required by the engineer.

Table 1 provides the SENSE 600[®] fitment substitution sizes for existing 500 MPa column fitments.

Table 1: Equivalent Capacity SENSE 600 [®] Column Fitments					
Designed 500 MPa fitment	Alternative SEN	Capacity			
Designation	Designation	Diameter (mm)	(kN)		
N12	S11	11.0	56.5		
N16	S15	14.6	101		
N20	S18	18.3	157		

This technical note provides a summary of the Performance Solution presented to the Australian Buildings Code Board certifiers, Global-Mark. The Performance Solution demonstrates how the existing 500N fitments can be substituted to utilise the benefits offered by the higher strength SENSE 600[®] fitments and still meet the requirements of AS 3600: *Concrete structures*.

Fitments in columns, sometimes also referred to as ligatures or column ties, are to provide confinement of the concrete and to restrain the longitudinal bars from buckling.

AS 3600 : 2018, Clauses 10.7.3 and 10.7.4 indicate that if the confining pressure and the restraint to the longitudinal bars provided by the fitments are not changed, then spacing requirements of the fitments are also not changed. Therefore one diameter fitment can be substituted by another diameter fitment provided they have the same or higher capacity which is given by the product of the area of the fitment ($A_{\rm b,fit}$) and the grade ($f_{\rm sy.f}$) of the fitment.

For example, in Table 1 above:

For a 500N, 12 mm fitment, the capacity is:

$$\frac{(\pi \times 12^2)}{4} \times 500 \times 10^{-3} = 56.5 \text{ kN}$$

For a 600N, 11.0 mm fitment, the capacity is:

$$\frac{(\pi \times 11^2)}{4} \times 600 \times 10^{-3} = 57.0 \text{ kN}$$

Therefore, the 500 MPa 12 mm diameter fitment can be replaced by a SENSE 600° 11.0 mm diameter fitment with the same spacing because it has the same or higher capacity of 57.0 kN.

A full set of calculations to AS 3600 is presented in Appendix A.

Complementary Publications

SENSE 600[®] – CodeMark Certificate of Conformity – Columns

SENSE 600°

Appendix A

A check of Australian Standard AS 3600: 2018 *Concrete structures* was completed and is detailed on the following pages to demonstrate that standard 500 MPa fitments can be directly substituted with the equivalent load capacity SENSE 600[®] fitment.

This check covers the relevant the Clauses in AS 3600 relating to column fitments, specifically Clauses 10.7.2 to 10.7.4 incl. and 14.5.4.

Designation	Units	S11	N12	S15	N16	S18	N20
Diameter	mm	11.0	12.0	14.6	16.0	18.3	20.0
Grade - $f_{ m sy.f}$	MPa	600	500	600	500	600	500
Area - A _{b.fit}	mm²	94.3	113	168	201	262	314
Capacity - $A_{ ext{b.fit}}$ x $f_{ ext{sy.f}}$	kN	56.5	57	101	101	157	157

Check to show using the data from the table above that:

SENSE 600[®] S11, S15 and S18 directly substitutes for N12, N16 and N20 respectively.

_____(`

Let $(A_{b.fit})_{500} \times 500 = (A_{b.fit})_{600} \times 600$ denote the general case

	\diamond
REFERENCE	CALCULATION
AS 3600: 2018	
CI.10.7.2	Functions of fitments
	Satisfy Clause 10.7.3 to confine concrete
	• Satisfy Clause 10.7.4 to provide lateral restraint of longitudinal bars against buckling
	 Satisfy Section 14 – Earthquake action in moment resisting frames
CI.10.7.3	Confinement to the core
CI.10.7.3.1	General requirements
	(a) for columns where $f'_{c} \leq 50$ MPa – deemed to satisfy if CI 10.7.4 is satisfied
	(b) (i) for columns where $f'_{\rm c}$ > 50 MPa – need to check Cl 10.7.3.2; 10.7.3.3 and 10.7.3.4
	(ii) Does not impact on diameter, impacts on spacing relative to dimensions only.

REFERENCE	CALCULATION			
CI.10.7.3.2	Calculation of core confinement by rational calculation			
	Use simplified calculation in CI 10.7.3.3			
CI.10.7.3.3	Calculation of core confinement by simplified calculation			
Eq. 10.7.3.3(1)	$f_{\rm neff} = k_{\rm e} f_{\rm r}$			
	Determine f_r using equation 10.7.3.3(2)			
	Determine f_{e} using equation 10.7.3.3(3)			
Eq. 10.7.3.3(2)	$f_{\rm r} = \frac{\sum_{\rm i}^{m} = 1 A_{\rm b.fit} f_{\rm sy} \sin \theta}{d_{\rm s} {\rm s}} \text{ Where } f_{\rm sy} \le 800 {\rm MPa}$			
	Since $(A_{b.fit})_{500} \times 500 = (A_{b.fit})_{600} \times 600;$			
	And sin θ , <i>ds</i> and <i>s</i> are unchanged,			
	Then $-(f_r)_{500} = (f_r)_{600}$			
	(a) For rectangular sections			
Eq. 10.7.3.3(3)	$k_{\rm e} = (1 - \frac{nw^2}{6A_{\rm c}})(1 - \frac{s}{2b_{\rm c}})(1 - \frac{s}{2d_{\rm c}})$			
	No terms dependant on fitment strength $f_{ m sy.f}$ or fitment area $A_{ m b.fit}$			
	(b) For circular sections			
Eq. 10.7.3.3(4)	$k_{\rm e} = (1 - \frac{s}{2d_{\rm s}})^2$			
	No terms dependant on fitment strength $f_{ m sy.f}$ or fitment area $A_{ m b.fit}$			
	Alternatively, for rectangular or circular columns the effective confining pressure can be calculated using:			
Eq. 10.7.3.3(5)	$f_{\text{r.eff}} = 0.5 k_{\text{e}} \rho f_{\text{sy.f}}$			
	$f_{\text{r.eff}} = 0.5k_{\text{e}}\rho f_{\text{sy.f}}$ Where $\rho = \frac{A_{\text{b.fit}} \times \text{total perim. of fitments crossing the section}}{A_{\text{c}} \times S}$			

REFERENCE	CALCULATION Substituting into Eq 10.7.3.3(5) –				
	$f_{\text{reff}} = 0.5k_{\text{e}} \frac{A_{\text{b.fit}} \times \text{total perim. of fitments crossing the section } \times f_{\text{syf}}}{A_{\text{c}} \times \text{s}}$				
	Re-arranging				
	$f_{\text{reff}} = 0.5k_{\text{e}} \left(\frac{A_{\text{b.fit}} \times f_{\text{sy.f}}}{A_{\text{c}} \times \text{s}}\right)$ x total perim. of fitments crossing the section x f_{syf}				
	Now, $(A_{b.fit})_{500} \times 500 = (A_{b.fit})_{600} \times 600;$				
	fitment perimeter and spacing is the same as is the column area A_c				
	therefore $(f_{\text{r.eff}})_{500} = (f_{\text{r.eff}})_{600}$				
	ie. If the design capacity of the SENSE 600° fitment equals the design capacity of the 500 MPa fitment, then the effective confining pressure is the same.				
CI.10.7.3.4	Deemed to conform core confinement				
	(a) For rectangular sections:				
Eq. 10.7.3.4(1)	Min fitment spacing $\leq \frac{15nA_{b.fit}f_{sy.f}}{f'_c\sqrt{A_c}}$				
	(b) For circular sections:				
Eq. 10.7.3.4(2)	Min fitment spacing $\leq \frac{100A_{\text{b.fit}}f_{\text{sy.f}}}{d_{\text{s}}f'_{\text{c}}}$				
	Now, $(A_{b.fit})_{500} \ge 500 = (A_{b.fit})_{600} \ge 600$				
	And n, number of fitments; $f'_{\rm c}$; $A_{\rm c}$, area of column and $d_{\rm s}$, overall dimension of fitments do not change.				
	Therefore (Min fitment spacing) ₅₀₀ = (Min fitment spacing) ₆₀₀				

CI.10.7.4	Restraint of longitudinal	reinforcement					
CI.10.7.4.1	General requirements						
		No impact from fitment strength $f_{\rm sy.f}$ or fitment area $A_{ m b.fit}$					
CI.10.7.4.2	Lateral restraint						
	No impact from fitment st	No impact from fitment strength $f_{ m sy.f}$ or fitment area $A_{ m b.fit}$					
CI.10.7.4.3	Diameter and spacing of f	itments and helices					
	(a) Minimum bar diameter	(a) Minimum bar diameter of fitment and helices to conforms to Table 10.7.4.3					
T.10.7.4.3		NOTE – allows the minimum diameter of fitments to be reduced by a factor of $\sqrt{(500/f_{sy.f}}$ This is applied and tabulated below.					
	Longitudinal bar diameter (mm)	Minimum bar diameter of 500 MPa fitment and helix (mm)	Minimum bar diameter o SENSE 600° fitment and helix (mm)				
	Single bars up to 20	6	N/A				
	Single bars 24 to 28	10	N/A				
	Single bars 32 to 36	12	11.0				
	Single bars ≥ 40	16	14.6				
	Bundled Bars	12	11.0				
	(b) Maximum spacing of fi	tments shall not exceed					
	(i) D_c and $15d_b$ for sir	ngle bars					
	(ii) $0.5D_c$ and $7.5D_b$ for bundled bars						
	(i) and (ii) are independent of fitment strength $f_{ m sy,f}$ or fitment area $A_{ m b.fit}$						
	(iii) Need to check Section 14.5						
	(c) Location of first or last fitment – independent of fitment strength $f_{\rm sy.f}$ or fitment area $A_{\rm b.fit}$						
CI.10.7.4.4	Detailing of fitments and helices						
	Independent of fitment at	rength $f_{sv.f}$ or fitment area A					

REFERENCE	CALCULATION				
CI.14.5.4	Columns				
	Only need to check this clause if the column is part of a seismic resisting frame				
	The spacing of fitments shall not be greater than				
	(a) Eight times the diameter of the smallest longitudinal bar enclosed				
	(b) $24\sqrt{(f_{sy.f}/500)}$ times the diameter of the fitment bar				
	(c) One-half of the smallest cross-sectional dimension of the column				
	(d) 300 mm				
	Only (b) is affected by the fitment strength $f_{ m sy.f}$ or fitment diameter $d_{ m b.fi}$.				
	The table below shows there is no change in the fitment spacing for the eq SENSE 600 [®] fitment when the formula in (b) is applied.				
	Clause 14.5.4 (b) – Max	imum fitment spac	ing for column in a seis	mic resisting frame	
	500 MPa Fitments Diameter (mm)	Maximum Spacing (mm)	SENSE 600 [®] Fitments Diameter (mm)	Maximum Spacing (mm)	
	10	240	N/A	N/A	
	12	288	11.0	288	
	16	384	14.6	384	
	20	480	18.3	480	

Disclaimer:

THIS DOCUMENT PROVIDES GENERAL GUIDANCE ONLY - SEEK PROFESSIONAL ADVICE

The information provided in this document is general guidance only. You should seek professional advice before relying on any of the information in this document. To the extent permitted by law, InfraBuild, the authors, publishers and editors expressly disclaim any liability for personal injury, death, or loss or damage directly or indirectly resulting from relying on this document. InfraBuild reserves the right to change specifications and availability of the products at any time.

Copyright © 2023, InfraBuild Australia Pty Ltd ABN 91 631 112 457. All rights reserved. This document (in full or part) must not be reproduced, copied, modified, adapted, translated, republished, uploaded or posted to any website or other online platform, publicly displayed, distributed for commercial purposes, or electronically transmitted or communicated in any way, without the express prior written permission of the copyright owner.

Document: T04 V0.1

lt just makes SENSE

