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The demand for sustainable construction has driven product manufacturers in Australia and 

around the world to conduct research and development into innovative products that o�er 

improved environmental credentials. Given steel is already one of the most recycled materials in 

construction, and certainly the highest in terms of value, the logical progression is to look further 

up the waste hierarchy of - Reduce, Reuse and Recycle. The top of the hierarchy is obviously the best 

and this is where InfraBuild Steel has a signi�cant focus. InfraBuild Steel has conducted extensive 

research and development in our own facilities and in collaboration with leading Universities in 

Australia, to produce higher grades of steel designed to reduce the mass of steel consumed in the 

search for more sustainable construction solutions.

Changes to Australian Standards, that now recognise these higher grades, will facilitate adoption 

in design and construction using these steels. In 2018 changes to AS 3600 - Concrete structures 

(Standards Australia 2018) and in 2019 changes to AS/NZS 4671 - Steel for the reinforcement 

of concrete (Standards Australia 2019), have provided the reinforced concrete industry the 

opportunity to explore the bene�ts o�ered by higher strength, ductile reinforcing steels. The 

design models in AS 3600:2018 now apply for reinforcing steels with yield strengths up to 800 MPa 

for column �tments and up to 600 MPa for all other elements.

Signi�cant sustainability bene�ts can be achieved using higher strength steels particularly 

in reinforced concrete elements that are governed predominately by strength rather than 

serviceability. Australian Standards usually o�er designers options for di�erent tiers of design. A 

lower tier will generally result in a simpler model with a more conservative result while a higher tier 

will require a more complex model but will result in a design which better utilises the capacity of 

the design element. 

Options with di�erent tiers of complexity are o�ered in AS 3600 in relation to column design. The 

rectangular stress block method is the lowest tier and the preferred method if calculations are to 

be completed by hand. However, given most, if not all designers will have access to column design 

software on the computer sitting on their desk and some even on the phone in their pocket on 

site, there is little need to resort to this lowest tier. Commercial design software typically utilises 

a curvilinear method rather than the rectangular stress block method because of the improved 

results. Furthermore, the lower tier of design o�ered by the rectangular stress block method 

currently is not able to e�ciently utilise the additional strength o�ered by 600 MPa steels over 

500 MPa steels.

While AS 3600 provides clear and prescriptive guidance to designers on how to implement the 

rectangular stress block method it only provides a series of guiding principles on how to implement 

the curvilinear method. This publication provides guidance on how to implement the curvilinear 

method in accordance with the provision of AS 3600: 2018. 

Preface
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This Design Guide is concerned with the strength design of the cross-section of reinforced 

concrete columns subjected to combined axial force and bending.  The rectangular stress block 

method is well covered in the Australian Standard AS 3600 – Concrete structures and it is not 

intended that the method will be covered in this document. A curvilinear method is also permitted 

by AS 3600, however in comparison, guidance on how to apply the method is not as well detailed as 

it is for the rectangular stress block method.  The curvilinear method is important for designs with 

600 MPa reinforcing bars as it better utilises the additional capacity of these bars when compared 

to 500 MPa bars. 

The Design Guide outlines detailed steps and provides worked examples on an option that satis�es 

the requirements of the curvilinear method permitted by AS 3600.

Also covered in this Design Guide are other aspects to improve the e�ciency of the design which 

are not excluded by AS 3600 or is an extension to the Standard.

The e�ects of slenderness on column design is outside the scope of this Design Guide as it is 

adequately covered by other texts on designing reinforced concrete to AS 3600.

1.  Scope
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2.  AS 3600 Design Provisions

AS 3600:2018, Clause 10.6.1, (Standards Australia 2018) Basis of strength calculations, provides an 

outline for determining the longitudinal reinforcing bars required in a column section–

(a)   Plane sections normal to the axis remain plane after bending.

(b)   The concrete has no tensile strength.

(c)   The distribution of stress in the concrete and the steel is determined using a stress-strain   

 relationship determined from recognized simpli�ed equations or determined from test data

(d)   The strain in compressive reinforcement does not exceed 0.003.

(e)   Where the neutral axis lies outside of the cross-section, consideration shall be given to the   

 e�ect on strength of spalling of the cover concrete.

Two options are o�ered to calculate the strength of the cross section and develop an Axial Load/

Moment interaction curve - a simpli�ed method using the rectangular stress block or the option 

to use a curvilinear stress-strain relationship. 

The rectangular stress block method limits the concrete strain under concentric load to 0.0025 

and the ultimate concrete strain at the extreme �bre is limited to 0.003 when the section is 

subjected to bending. These limits in the concrete strain and the compatibility of the composite 

section, limit the steel strain under squash load to 0.0025 and to less than 0.003 when the column 

section is resisting an axial force and moment.

If a curvilinear stress block is adopted, the stress-strain relationship required by the Standard 

is “de�ned by recognized simpli�ed equations” or “determined by test data”.  The Note to Clause 

10.6.1 reads:

1)  If a curvilinear stress-strain relationship is used, then –

 a) Clause 3.1.4 places a limit on the value of the maximum concrete stress; and

 b) the strain in the extreme �bre may be adjusted to obtain the maximum bending strength  

   for a given axial load.

2)  The e�ect of the con�nement on the strength of a section may be taken into account, provided  

 secondary e�ects such as concrete spalling, for example, are also considered.
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2.1 Curvilinear Stress-Strain Relationship

The curvilinear stress-strain relationship is a higher tier model than that of the rectangular stress 

block, which arguably o�ers a higher degree of accuracy, and better utilisation of the additional 

capacity o�ered by 600 MPa steels (Ng and McGregor 2021). This approach o�ers better 

utilisation because the ultimate concrete strain is not limited to 0.003.

AS 3600 Clause 10.6.1 (c) refers to Clause 3.1.4 for the concrete stress-strain relationship.  This 

acknowledges that the relationship is curvilinear and allows users to utilise “recognized simpli�ed 

equations” or the properties “determined from test data”.  The AS 3600 Supplement (Standards 

Australia 2022), commonly referred to as the Commentary (Clause C8.1.2), o�ers two options:

1)  A curvilinear model for both the ascending and descending branches of the compressive   

 stress-strain relationship (refer to Figure 2.1a and AS 3600 Commentary C3.1.4), requires   

 that the strain at the extreme compressive �bre at ultimate load should be selected such   

 that the moment on the section is maximized when the rules of equilibrium and strain   

 compatibility are applied. This is a complex calculation.

2)  A curvilinear stress block model with a curvilinear ascending branch followed by a constant   

 value of stress equal to the peak stress with the extreme �bre compressive strain, dependant 

 on the concrete strength. One such representation  is provided in the �b Model Code (2013)   

 and given by:

 

    ε
cu 

=
  
0.0026 + 0.035 (90 - ƒ'

c)4

 ≤ 0.0035     Eq. (2.1)

 
Figure 2.1 show plots of the stress-strain relationship for the curvilinear model and the 

curvilinear stress block model. 

Figure 2.1 – Concrete stress strain relationships
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Figure 2.2 shows diagrammatically the di�erence between the stress distribution on the cross 

section of a column subjected to a moment and an axial force, for both models. 

Figure 2.2 – The stress distribution on the cross setion of a column subjected to a moment and an axial 
force using simpli�ed recgonized concrete stress strain relationships
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2.2 Rectangular – Parabolic stress block

The curvilinear model with the stress block as shown in Figure 2.2 (a) is arguably the option that 

most closely models the actual behaviour of a column in combined bending and compression.  

However, the rectangular – parabolic stress block model is the model commonly adopted by 

designers because it matches very closely the curvilinear model and is simple to use because the 

stress distribution is easily calculated as is the centroid of the compression block. The centroid is 

simply the resultant of the rectangular and parabolic stress blocks. 

2.2.1 Design stress-strain curves

AS 3600, Clause 3.1.4 requires designers to use a stress-strain relationship de�ned by recognized 

simpli�ed equations. Given that AS 3600 is modelled on the �b Model Code (2013), the obvious 

choice is to use the rectangular-parabolic stress-strain relationship given in that publication.  The 

speci�c equations are (adjusted for use with the phi-factor approach of AS3600):

 

  ε
c2 

=
  
0.002

 

 for ƒ'
c 

≤ 50MPa  (Eq. 2.2.1.1a)  

 ε
c2 

=
  
0.002 + 0.000085 (ƒ'

c
– 50

 
)

0.53

≤ 0.0035 for  ƒ'
c 

> 50MPa (Eq. 2.2.1.1b)

   ε
cu2 

=
  
0.0026 + 0.035 (90 - ƒ'c)4

 ≤ 0.0035  for 50MPa < ƒ'
c 

≤ 90MPa  (Eq. 2.2.1.2)

   ε
cu2 

=
  
0.0026 – 0.035 (90 - ƒ'c)4

 ≤ 0.0035  for  ƒ'
c 

> 90MPa (Eq. 2.2.1.2b)

   n
 
=

 
2  for  ƒ'

c 
≤ 50MPa (Eq. 2.2.1.3a)

   n
  
=

  
1.4 + 0.0234 (90 - ƒ'c)4

  for 50MPa < ƒ'
c 

≤ 90MPa (Eq. 2.2.1.3b)

   n
  
=

  
1.4 – 0.0234 (90 - ƒ'c)4

  for  ƒ'
c 

> 90MPa  (Eq. 2.2.1.3c)

   ƒ'
co 

=
  
0.9ƒ'c  (Eq. 2.2.1.4)

   σ
c 

=
  
ƒco 

[1-(1- εc   )
n 

]  for  0
 
≤ εc ≤ εc2

 (Eq. 2.2.1.5a)

   σ
c
=

  
ƒco for  0

 
≤ εc ≤ εc2

 (Eq. 2.2.1.5b)

 Where:  

	 ƒ'
c
 is the characteristic compressive strength of concrete

100

100

100

100

εc2
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The preceding formulae were used to calculate the values for the common concrete strengths 
available in Australia and are shown in Table 2.1 and the plot of stress-strain relationships are 
shown in Figure 2.2b.

Table 2.1  Stress - Strain relationship for concretes referenced in AS 3600

Concrete 
Strength 

(MPa)

ƒ1
c (MPa)

25 32 40 50 65 80 100

ε
c2

0.002 0.002 0.002 0.002 0.0024 0.0025 0.0027

ε
cu2

0.0035 0.0035 0.0035 0.0035 0.0027 0.0026 0.0027

n 2.0 2.0 2.0 2.0 1.49 1.40 1.40

ƒco 23 29 36 45 59 72 90

ε
c

σc

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.00025 5.3 6.8 8.4 10.5 9.0 9.8 11.5

0.0005 9.8 12.6 15.8 19.7 17.5 19.2 22.6

0.00075 13.7 17.6 21.9 27.4 25.5 28.2 33.2

0.001 16.9 21.6 27.0 33.8 32.8 36.6 43.2

0.00125 19.3 24.8 30.9 38.7 39.5 44.5 52.7

0.0015 21.1 27.0 33.8 42.2 45.6 51.8 61.5

0.00175 22.1 28.4 35.4 44.3 50.8 58.4 69.6

0.002 22.5 28.8 36.0 45.0 55.0 64.2 76.9

0.00225 22.5 28.8 36.0 45.0 57.9 68.9 83.1

0.00250 22.5 28.8 36.0 45.0 58.5 71.9 88.0

0.00255 22.5 28.8 36.0 45.0 58.5 72.0 88.7

0.00260 22.5 28.8 36.0 45.0 58.5 72.0 89.4

0.00270 22.5 28.8 36.0 45.0 58.5    

0.00280 22.5 28.8 36.0 45.0      

0.00290 22.5 28.8 36.0 45.0      

0.00300 22.5 28.8 36.0 45.0      

0.00310 22.5 28.8 36.0 45.0      

0.00320 22.5 28.8 36.0 45.0      

0.00330 22.5 28.8 36.0 45.0      

0.00340 22.5 28.8 36.0 45.0      

0.00350 22.5 28.8 36.0 45.0      
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3.  Strength of cross section   
 calculated using a rectangular-  
 parabolic stress block

AS 3600 Clause 10.6.2 details how the rectangular stress block can be used to calculate the 

strength of a column cross section for various bending and compression combinations prior to 

the application of a capacity reduction factor, ∅. The strength of a particular cross section can 

then be represented by a strength interaction diagram. A similar approach can be used with the 

rectangular-parabolic stress block.

There are four key points in a strength interaction diagram, they are:

1. Squash load

2. Decompression point

3. Balanced point 

4. Pure bending point

Arguably, the simplest way to apply the rectangular-parabolic stress block to AS 3600 and ensure 

conformity is to use the same method as outlined for the rectangular stress block. That is, use each 

of the Clauses 10.6.2.2 to 10.6.2.5 and just substitute the rectangular-parabolic stress block for the 

rectangular stress block.

3.1 Squash load 

Con�nement of the concrete provided by �tments modi�es the stress-strain relationship.  However, 

in this section of the Guide the same methodology AS 3600 prescribes for the rectangular stress 

block is used for the rectangular-parabolic stress block. Section 5.1. of this guide examines the 

options permitted by AS 3600 to model con�nement and the impact it has on the squash load. 

 Nu0 = (∝1 x ƒ'C x Ac ) + (As x σs ) (Eq. 3.1 (a))

Where 

 ∝1  = 1.0 - 0.003 ƒ'c  with 0.72 ≤ ∝1 ≤ 0.85 (Eq. 3.1 (b))

 σs  =  steel stress with a maximum strain in the reinforcement (εs) of 0.0025

600 MPa reinforcing steel has a modulus of elasticity of 200 MPa, the same as a 500 MPa 

reinforcing steel. The relationship between the stress and strain of a reinforcing bar is:

  Es = 
σ

s /εs
 (Eq. 3.1(c))

Rearranging gives  σs = Es x εs (Eq. 3.1(d))

Substituting gives   = 200 x 103 x 0.0025 (Eq. 3.1(e))

Evaluating gives  = 500 MPa (Eq. 3.1 (f))

This indicates that at the squash load point, the maximum strain limit set at 0.0025 for the 

reinforcing steel limits the capacity of a 600 MPa bar to 500 MPa. 

Thus   

  Nu0 = (∝1 x ƒ'C x Ac ) + (As x σs ) where σs ≤ 500 MPa (Eq. 3.1 (g))
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3.2 Decompression point

The decompression point is calculated taking the strain in the extreme compression �bre equal to 

the ultimate concrete strain (εcu 
) and the extreme tensile �bre strain equal to zero. The neutral axis 

is at the full depth of section.

3.3 Balanced point

The balanced point is where the outermost layer of reinforcing steel has reached its yield stress 

and the extreme concrete �bre has just reached its ultimate value. For 600 MPa reinforcing steel 

εS= 0.003. The neutral axis depth at the balanced point is kubd where the value of kub
 is given by 

the formula –

  kub=        εcu
   (Eq. 3.3(a))

              Where    ε
S 

= E
S
/ƒsy   (Eq. 3.3(b))

3.4 Pure bending point

The pure bending point occurs when the sum of the compressive forces is equal to the sum of the 

tensile forces. To �nd this point an iterative process varying the value is adopted until the sum of the 

forces is equal to zero. 

3.5 Transition from the squash load to the decompression point

AS 3600 states that where the neutral axis lies outside the section, the section strength may be 

calculated using a linear relationship between the decompression point and the squash load. It is 

reasonable (and conservative) to adopt the same approach for the rectangular-parabolic stress block; 

however, if the calculations are produced using software or a spreadsheet then it is just as easy to set  

for an appropriate range of values greater than 1 up to 100 and calculate the corresponding moments 

and axial force capacities.

3.6 Transition from the decompression point to the pure bending point

Where the neutral axis lies within the cross section the maximum strain shall be taken as that given 

in Table 2.1.  The values along this part of the curve can be determined by varying the value of ku from 

the value of ku determined at the pure bending point up to the decompression point where ku = D/d0

3.7 Capacity reduction factor 

The design capacity of the section is determined by multiplying the axial force capacity and its 

corresponding moment capacity by the capacity reduction factor, phi (∅). Table 2.2.2 of AS 3600 

provides the phi factors and is summarised in Table 3.7.1.

 

It is evident from Table 3.7.1 that ∅0 is dependent on the slenderness (column e�ective length) and the 

dead to live load ratio of the column and not the method for calculating the cross-sectional strength.

Table 3.7.1   Capacity reduction factors 

Squash Load Capacity reduction factors (∅)

Nu ≥ Nub
∅ = ∅0 where

∅0 = 0.65 for Short Columns and Q/G≥ 0.25

∅0 = 0.60 otherwise

Q = Live load & G = Dead load

Nu < Nub
∅ = ∅0 

+ [(∅' – ∅0 )(1 – Nu/Nub)]

Where ∅'  is

0.65 ≤ 1.24 – 13ku0/12 ≤ 0.85

ε
cu 

+ ε
S
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4. AS 3600 worked example

Two worked examples are presented to illustrate how the rectangular-parabolic stress method 
can be applied to: - a) Rectangular columns and b) Circular columns 

4.1 Rectangular column

Consider a rectangular column 600 x 400 mm shown in Figure 4.1.1 reinforced with 8 S26 bars.

Figure 4.1.1 – Design Example 1: Rectangular column cross section

The corresponding stress-strain curve for 40 MPa concrete is shown in Figure 4.1.2 

Figure 4.1.2 – Stress strain curve for 40MPa concrete

Calculate the 4 points as shown on the curve in Figure 4.1.3

1) Squash Load Nuo

2) Decompression point MuD , NuD

3) Balanced point Mub, Nub

4) Pure Bending Muo

b = 400mm

D= 600mm

Reinforcing steel

 Longitudinal - 8S26 (600MPa) 
 Fitments - S11@300 (600MPa)

ƒc
 = 40MPa;

Cover = 40mm

d= 600 – 40 – 11 – 26/2 = 536mm
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Figure 4.1.3 – Key points on the Axial Load: Moment interaction curve

4.1.1 Axial load

Use Eq. 3.1(g) to calculate the squash load. 

    Nuo = (α1 x ƒ'c x Ac) + (As x σs 
) where

ƒ'c = 40 MPa

Where α1	using Eq 3.1(b) is:

α1	: 0.72 ≤ 1.0 - 0.003 x 40 ≤ 0.85

α1	= 0.85

As = 8 x π x 25.62
  = 4,118mm2

Ac = 400 x 600 – 4118 = 235,882mm2

σs = 500 MPa

Substituting gives: 

   Nuo  = (0.85 x 40 x 235,882) + (4,118 x 500)

    = 10.078988 N

    = 10080 kN

Applying the capacity reduction factor (∅) as required by AS3600 and table 3.7.1 gives the following 

design capacities depending on the column e�ective length and the dead (G) to live load ratio (Q).

Table 4.1.1.1  Design Capacity for each of the two reduction factors

Capacity Reduction Factor ∅ Nuo (kN) ∅Mu (kNm)

∅ = 0.65 6551 0

∅ = 0.6 6047 0

4
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4.1.2 Decompression point

At the decompression point the distance to the neutral axis D = 600 and the value of ku = D/d0. 

For a concrete with ƒ’c = 40 MPa, from Table 2.1, εc2 = 0.002 and εcu 
= 0.0035.

Figure 4.1.2.1 – Strains and resultant concrete stresses at the decompression point

Referring to Figure 4.1.2.1 above, the following can be deduced

1. The strain varies linearly from 0, at the neural axis to εcu (= 0.0035) at the extreme 

compressive �bre.

2. Applying similar triangles, an expression for where strain reaches εc2 (= 0.002) is 

determined to be a distance of 4/7D from the neutral axis.

3. The compressive force in the concrete increases parabolically from zero, at the neutral 

axis to, ƒco 
(36 MPa) and then has a constant value of ƒco 

for the remaining 3/7D to the 

extreme compression face.

4. C1 represents the compressive force equal to ƒco x 3/7D x b (stress x area)

5. C1 acts at 3/14D (3/7D/2) below the extreme compression face. Refer to Appendix B for 

geometrical properties of a parabola.

6. C2 represents the compressive force equal to 2/3 x ƒcd x 4/7D x B (stress x area). The 

stress being equivalent to half a parabola (2/3 ƒoo ) and the area being 4/7d x B.

7. C2 acts through the centroid of the parabola 20/56d (5/8
 X 4/7D) above the neutral axis

8. The two forces C1 and C2 can be summed to give a resultant force Cc, where 

 Cc = 0.8095 x ƒco 
x b x D  (Eq. 4.1.2)

  acting 0.4160D below the compressive �bre.

The strain distribution and the resultant forces are shown in Figure 4.1.2.2. 

The resultant forces are summed to determine the axial capacity and moments are taken about 

the plastic centroid of the section to determine the �exural capacity. The results are presented 

in Table 4.1.2.1 with the convention that compressive forces are positive.
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Figure 4.1.2.2 – Strains and resultant forces at the decompression point

Table 4.1.2.1   Resultant forces at the decompression point

Force
xi

(mm)

εi σi  or  ƒco.i
(MPa)

A
i

(mm2)

F
i

(kN)
D/2-xi

(mm2)

Mi

(kNm)

S
1

64 0.0031 600 1544 926 236 219

S
2

300 0.0018 350 1029 360 0 0

S
3

536 0.0004 74 1544 115 -236 -27

C
c

250       6994 50 353

C
1

64 0.0031 -36 1544 -56 236 -13

C
2

300 0.0018 -35 1029 -36 0 0

C
3

536 0.0004 -8.4 1544 -19 -236 3

Total 8285 535

Note that the values in Table 4.1.2.1 considers the double counting that would otherwise occur 

because the reinforcing bars in reinforcing layers 1 and 2 have displaced concrete and thus reduced 

the resultant concrete compressive force, Cc. An adjustment can be made by subtracting C1 and C2 

corresponding to the displaced concrete and appropriate ƒ'c at each layer. 

At the decompression point the calculated capacities are:

 N
uD

 = 8285 kN;  M
uD 

= 535 kNm

Applying the capacity reduction factor (∅) as required by AS 3600 and Table 3.7.1 gives the following 

design capacities depending on the column e�ective length and the dead to live load ratio.

Table 4.1.2.2  Design Capacities at the decompression point for each of the two reduction factors

Design Value ∅NuD (kN) ∅MuD(kNm)

∅ = 0.65 5385 348

∅ = 0.6 4971 321
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ε σ ƒ

ƒ

4.1.3 Balanced point

At the balanced point Eq. 3.3(a) provides the value of ku = kub where

    kub =         
ε

cu

And Eq. 3.3 (b) gives   εs	=	Es/ƒsy

For a 600 MPa Steel

                                                          εs =      
2

 
x 105           

= 0.003

    kub =         
0.0035             

= 0.5385

The depth to the neutral axis is 

 db = kub x d

  = 0.5385 x 536

  = 289mm

  

             

Figure 4.1.3.1 – Strains and resultant concrete stresses at the balanced point

An examination of the stress-strain distribution and resultant stresses for the balanced point 

shown in Figure 4.1.3.1 compared with those for the decompression point shown in Figure 4.1.2.1 

reveals a degree of similarity. Since the expressions for the resultant force and where it acts in 

Eq. 4.1.1 are expressed in terms a dimension D the same derived expressions can be used for the 

balanced point by replacing D with db. Hence at the balanced point

 Cc= 0.8095 x ƒco x B x d
b
  (Eq. 4.1.3 (a))

  acting at 0.4160db below the compression face as shown in Figure 4.1.3.2.

ε
cu 

+
  
ε

s

600

0.0035 + 0.0035
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Figure 4.1.3.2 – Strains and resultant forces at the balanced point

The resultant forces are summed to determine the axial capacity and moments are taken about 

the plastic centroid to determine the moment capacity for the balanced point. The results are 

presented in Table 4.1.3.1. Note that these values considers the double counting that would other-

wise occur because the reinforcing bars in layer 1 have displaced concrete and thus reduces the 

calculated resultant concrete compressive force, Cc. An adjustment can be made by subtracting 

C1 corresponding to the displaced concrete and appropriate ƒco.i at that layer. 

 Table 4.1.3.1  Resultant forces at the balanced point 

Force xi

(mm)

εi σi  or  ƒco.i
(MPa)

A
i

(mm2)
F

i

(kN)
D/2-xi

(mm2)
Mi

(kNm)

S
1

64 0.0027 545 1544 842 236 199

S
2

300 -0.0001 -27 1029 -28 0 0

S
3

536 -0.0030 -600 1544 -926 -236 219

C
c

120 3366 180 605

C
1

64 0.0027 -36 1544 -56 236 -13

Total 3197 1010

At the balanced point the calculated capacities are:

 Nub = 3197 kN  Mub 
= 1010 kNm

Applying the capacity reduction factor (∅) as required by AS 3600 and Table 3.7.1 gives the 

following design capacities depending on the column e�ective length and the dead to live load ratio.

Table 4.1.3.2   Design Capacities at the balanced point for each of the two factors

Design Value ∅ Nub (kN) ∅ Mub (kNm)

∅ = 0.65 2078 657

∅ = 0.6 1918 606



19

4.1.4 Pure bending point

At the pure bending point, as the name suggests, the column has no applied axial load. To �nd 

this point the strains and the resultant forces are calculated for various values of ku. An iterative 

process is undertaken to �nd the value of ku such that the resultant force is zero. This is most 

e�ciently achieved using a simple piece of software code or spreadsheet. For this example an 

Excel spreadsheet using the “Goal Seek” option was utilised to determine the ku value to be 0.1902 

giving a neutral axis depth of 102 mm. 

Figure 4.1.4.1 – Strains and resultant concrete stresses at the pure bending point

Table 4.1.4.1 provides the details of the stresses, strains and forces and con�rms that when the 

resultant forces are summed the net value is zero and the moment is 609 kNm. Note that the 

values in Table 4.1.4.1 take into account the double counting that would otherwise occur because 

the reinforcing bars in reinforcing layer 1 have displaced concrete and thus reduces the resultant 

concrete compressive force, Cc. An adjustment can be made by subtracting C1 corresponding to 

the displaced concrete and appropriate ƒ'c at that layer. 

Table 4.1.4.1 Resultant forces at the Pure Bending point

Force xi

(mm)

εi σi  or ƒco.i
(MPa)

Ai

(mm2)

Fi

(kN)
D/2-xi

(mm2)

Mi

(kNm)

S
1

64 0.0013 262 1544 405 236 96

S
2

300 -0.0068 -600 1029 -618 0 0

S
3

536 -0.0149 -600 1544 -926 -236 219

C
c

43 1189 258 306

C
1

64 0.0013 -31 1544 -49 236 -12

Total 0 609
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At the pure bending point the calculated capacities are:

   N
ub

 = 0 kN;   M
ub 

= 609 kNm

Applying the ∅ value as required by AS 3600 and Table 3.7.1 it is noted that Nu
 < Nub  so 

   ∅ = ∅0 + [( ∅' - ∅0 ) (1 - Nu / Nub )]

Where 

 ∅'  = 1.24 - 13ku0/12     where 0.65 ≤ ∅' ≤ 0.85

       and k
uo

 is for Pure bending 

   = 1.24 - 13 * 0.1902 / 12

  = 1.03

	 ∴	∅' = 0.85     since 0.65 ≤ ∅' ≤ 0.85 

Therefore

 ∅  = ∅0 + [ (∅' - ∅0 ) ( 1 - Nu / Nub )]

 = ∅0 + [ (0.85 - ∅0 ) ( 1 - 0/3197 )]

 = 0.85

The ∅  value of 0.85 is the expected result, however the calculation steps have been included to 

demonstrate how the ∅ value varies linearly from 0.85 to ∅0 relative to the axial load from the 

pure bending point to the balanced point.

At the pure bending point the design moment is –

  ∅Muo= 0.85  x 609

   = 518kNm

4.1.5 Axial Load – Moment interaction curve

The four key points calculated in the preceding sections are plotted and labelled on the Axial Load 

– Moment Interaction curve shown in Figure 4.1.5.1.  The points between the decompression point 

and the pure bending point have been generated using the same spreadsheet used to calculate 

the four key points by including varying values of ku from D/d0 down to 0.1902, the value that gave 

the pure bending point.
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Figure 4.1.5.1 – Axial force - Moment Interaction curve using a parabolic rectangular strain for a 
section with a capacity reduction factor of 0.65

4.2 Circular Column 

The second example considers a circular column 800 mm in diameter shown in Figure 4.2.1. 

Figure 4.2.1 – Design example 1 – Circular column cross section

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Interaction Curve

Squash load

Decompression point

Balance point

Pure bending point

Moment (kNm)

A
x
ia

l 
Lo

a
d

 (
k

N
)

D= 800 mm

Reinforcing steel 

Longitudinal - 8S29 (600 MPa) 

Fitments- S 11@300 (600 MPa)

’ = 65 MPa; 

Cover = 40 mm

= 800 40 11 29/2 = 536mm



22

This example di�ers from the �rst in a signi�cant way. The circular shape means the cross-section 

width varies so a simple expression for the concrete compressive force and the location of the 

result is more di�cult to derive. It should also be noted for concrete strengths over 50 MPa the 

stress-strain relationship while still rectangular-parabolic is not of degree 2. For a 65 MPa concrete 

equation– Eq. 2.2.1.4 and Eq 2.2.1.5 gives

  σc = 58.5 [ 1 - ( 1 - 
ε

c   )
1.49

 ]   (Eq. 4.2.1)

The expression for the resultant concrete stresses derived in Example 1 only applies to parabolas 

of degree 2 and therefore not applicable for 65 MPa concrete where n = 1.49 and not 2.  

Appendix B provides the general formula for each of the standard concrete strengths in AS 3600. 

The corresponding stress-strain curve for 65 MPa concrete is shown in Figure 4.2.2.

Figure 4.2.2  – Stress-strain curve for 65 MPa concrete

For this example, 4 points which form the interaction curve are calculated:

1) Squash load Nuo

2) Decompression point MuD, NuD

3) Balanced point Mub, Nub

4) Pure Bending point Muo

.0024
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4.2.1 Squash load

Use Eq 3.1(g) to calculate the squash load. 

    Nu0 =  ∝1 x ƒ'C x AC + AS x σS    where

ƒ'C = 65

Where ∝1  using Eq 3.1(b) is:

∝1 
:
 0.72 ≤ 1.0 - 0.003 x 65 ≤ 0.85

∝1 = 0.8050

AS  = 8 x 
π	x 29.22 

= 5357mm2

AC = π	x 8002 

- 5357 = 497,298 mm2

σS = 500 MPa

Substituting gives:  

 Nu0  =  0.8050 x 65 x 497,298 +	5357	x 500

  = 28,699, 741 N

  = 28,700 kN

Applying the capacity reduction factor (∅) as required by AS 3600 and Table 3.7.1 gives the following 
design capacities dependaant on the column e�ective length and the dead to live load ratio.

Table 4.2.1   Design capacities for each of the two phi factors

Design Value ∅ Nub (kN) ∅ Mub (kNm)

∅ = 0.65 18,660 0

∅ = 0.6 17,220 0

4

4
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4.2.2 Decompression point

At the decompression point the distance to the neutral axis is 800  mm. For a concrete with  

ƒ'C = 65 MPa, from Table 2.2.1 and the equation from 2.2.1, εc2 = 0.0024, εcu 
= 0.0027 and  

ƒdc= 58.5 MPa. Using this information, the strains and concrete stresses at the decompression point 

can be represented as shown in Figure 4.2.2.1

Figure 4.2.2.1  – Strains and concrete stresses at the decompression point

In Example 1, it was relatively simple to derive a general expression resolving the rectangular-

parabolic stress distribution and multiplying by the width to determine the resulting force acting 

on the rectangular section. However, for a circular section where there is not a constant width, 

it is easier to determine the stress x area by numerical integration. In this Example, the area to 

be integrated, is divided into 10 strips and the midpoint rule using the concrete stress value at 

the midpoint of the strip as shown in Figure 4.2.2.2 is used. This midpoint method of numerical 

integration was chosen for its simplicity in demonstrating the calculation process in this example. 

Other methods such as Simpson’s rule with more strips will give more accurate values. 

Figure 4.2.2.2  – Numerical integration to determine resultant concrete compression force

Figure 4.2.2.1 – Strains and concrete stresses at decompression point

Figure 4.2.2.2 – Numerical integration to determine resultant concrete compression force
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The resultant concrete compression force is given by

  Cc = ∑10
						Li x W x σi  

Where  Li 
=     4 x Xci x (D - Xci)

At the decompression point:

ku = 1.089  → D = 800mm

Using 10 intervals

 W  = 800 ÷  10

 = 80mm

The numerical integration presented in Table 4.2.2.1 is from a spreadsheet using the formulae 

from Section 2.2.1 to determine the concrete properties, rather than reading and extrapolating 

Table 2.1. This was considered easier and more accurate. 

The concrete strain is determined using similar triangles as shown in Figure 4.2.2.1 and the 

stress at each point, , is calculated using Eq. 2.2.1.5a

	 	 	 σc = ƒco [1 - (1 – εc   )n ]

   

From Table 2.1:  ƒco = 58.5  

 εc2 = 0.0024

 n  = 1.49 

        

σc could also be interpolated from Table 2, however it is generally easier and more accurate to 

use Eq. 2.2.1.5a. 

i=1

ε
c2
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Table 4.2.2.1  Numerical integration to determine the concrete compression force at   

the decompression point 

i xci

(mm)
Li

(mm)

Area
(mm2)

Strain - Stress
(MPa)

Ci

(kN)
Ci*xci

(kNmm)

1 40 348.7 27897 0.002600 58.5 1632 65279

2 120 571.3 45705 0.002326 58.4 2670 320351

3 200 692.8 55426 0.002053 55.7 3089 617831

4 280 763.2 61052 0.001779 51.3 3132 877059

5 360 796.0 63679 0.001505 45.7 2909 1047145

6 440 796.0 63679 0.001232 39.1 2488 1094788

7 520 763.2 61052 0.000958 31.6 1931 1003958

8 600 692.8 55426 0.000684 23.4 1298 778793

9 680 571.3 45705 0.000411 14.5 664 451406

10 760 348.7 27897 0.000137 5.0 139 105840

Totals 19952 6362449

From the numerical integration table, the resultant force (C) is 19952 kN

The location of the resultant force is given by 

XRC = ∑
10						C

i
 x

ci  

 =   6362449 

 
  = 319mm

The resultant concrete compression force and steel forces are shown in Figure 4.2.2.3

   

Figure 4.2.2.3  – Resultant forces at the decompression point

The resultant forces shown in Figure 4.2.2.3 are summed to determine the axial capacity and 

moments are taken about the plastic centroid to determine the moment capacity. The results 

are presented in Table 4.2.2.2 with the convention that compressive forces are positive. The 

Table entries C
1
, C

2
, C

3
 C

4
 and C

5
 are included to account for the void in the concrete where the 

reinforcing bars are located and thus reduces the calculated concrete compressive force, C
c
, to 

better model the section.

19952

    

n=1

			∑10			C
i n=1
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Table 4.2.2.2  Resultant forces and moments at decompression point

Force xi

(mm)
εi σi  or  ƒco.i

(MPa)
Ai

(mm2)
Fi

(kN)
D/2-xi

(mm2)
Mi

(kNm)

S1 66 0.0025 502 670 336 334 113

S2 164 0.0022 435 1339 583 236 138

S3 400 0.0014 274 1339 367 0 0

S4 637 0.0006 112 1339 149 -237 -35

S5 734 0.0002 45 670 30 -334 -10

Cc 319 0.0016 19952 81 1618

C1 66 0.0025 59 670 -39 334 -13

C2 164 0.0022 57 1339 -77 236 -18

C3 400 0.0014 42 1339 -57 0 0

C4 637 0.0006 19 1339 -26 -237 6

C5 734 0.0002 8 670 -5 -334 2

Total 21213 1800

At the Decompression point the calculated capacities are:

 N
uD

 = 21213 kN;  M
uD 

= 1800 kNm

Applying the capacity reduction factor, as required by AS 3600 and Table 3.7.1 gives the following 

design capacities depending on the column e�ective length and the dead to live load ratio.

Table 4.2.2.3  Design Capacities for each of the two  factors

Design Value ∅ NuD (kN) ∅ MuD (kNm)

∅ = 0.65 13790 1170

∅ = 0.6 12730 1080
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4.2.3 Balanced point

At the balanced point Eq. 3.3(a) provides the value of k
u 

= k
ub 

, where 

kub = εcu

   

And 3.3(b) gives ε
s
 = E

s 
/ƒ

sy

For a 600 MPa Steel

   εs =  2 x 105

  = 0.003

For concrete with ƒ’c = 65 MPa,  εcu = 0.0027 (from Table 2.1)

   kub =          0.0027            = 0.4737

The depth to the neutral axis is 

   d
b
  = k

ub
 x d

    = 0.4737 x 734

     = 348mm 

At the balanced point the value of, and the distance to the neutral axis is 348 mm. For a concrete 

withƒ = 65 MPa, from equations in 2.2.1, ε
c2

 = 0.0024, ε
cu 

= 0.0027 and 58.5 MPa. Using this 

information, the strains and concrete stresses at the decompression point can be represented 

as shown in Figure 4.2.3.1.

εcu + εs

600

0.0027 + 0.003
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Figure 4.2.3.1 – Strains and concrete stresses at the balance point
Figure 4.2.3.1  – Strains and concrete stresses at the balanced point

The concrete compression force, Cc
 can be found for the balanced point using the same method 

of numerical integration used for the decompression point. Table 4.2.3.1 contains the data for the 

numerical integration to determine Cc at the balanced point.

Table 4.2.3.1 Numerical integration to determine the concrete compression force 

at the balanced point 

i xci

(mm)
Li

(mm)
Area

(mm2)
Strain - 

Stress
(MPa)

Ci

(kN)
Ci*xci

(kNmm)

1 17.4 233.3 8118 0.002600 58.5 475 8260

2 52.2 395.1 13744 0.002326 58.4 803 41892

3 87.0 498.0 17326 0.002053 55.7 966 83985

4 121.8 574.7 19994 0.001779 51.3 1026 124904

5 156.5 634.8 22082 0.001505 45.7 1009 157905

6 191.3 682.5 23744 0.001232 39.1 928 177511

7 226.1 720.5 25064 0.000958 31.6 793 179226

8 260.9 750.1 26094 0.000684 23.4 611 159439

9 295.7 772.3 26868 0.000411 14.5 390 115392

10 330.5 787.8 27407 0.000137 5.0 137 45217

Totals 7136 1093730

From the numerical integration table, the resultant force (C) is 7136 kN

The location of the resultant force is given by

XRC = ∑
10						C

i
 x

ci  

 =   1093730 

 
  = 153 mm

7136

n=1

			∑10				C
i n=1
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Figure 4.2.3.2  – Resultant forces at the balanced point

The resultant forces shown in Figure 4.2.3.2 are summed to determine the axial capacity and 

moments are taken about the plastic centroid of the section to determine the corresponding 

�exual capacity. The results are presented in Table 4.2.3.2

Table 4.2.3.2  Resultant forces and moments at balanced point

Force xi 

(mm)
εi σi  or  ƒco.i

(MPa)
Ai

(mm2)
Fi

(kN)
D/2-xi

(mm2)
Mi

(kNm)

S1 66 0.0022 444 670 297 334 99

S2 164 0.0015 290 1339 388 236 92

S3 400 -0.0004 -82 1339 -110 0 0

S4 637 -0.0023 -455 1339 -609 -237 144

S5 734 -0.0030 -600 670 -402 -334 134

Cc 153 7136 247 1761

C1 66 0.0022 58 670 -39 334 -13

C2 164 0.0015 44 1339 -59 236 -14

Total 6604 2204

At the balanced point the calculated capacities are:

 N
ub

 = 6604 kN;  M
ub 

= 2204 kNm

Applying the capacity reduction factor (∅) as required by AS 3600 and Table 3.7.1 gives the following 

design capacities depending on the column e�ective length and the dead to live load ratio.

Table 4.2.3.3  Design Capacities for each of the two phi factors

Design Value ∅ Nul (kN) ∅ Mul (kNm)

∅ = 0.65 4292 1432

∅ = 0.6 3962 1322
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4.2.4 Pure bending

At the pure bending point, the applied axial load is zero. An iterative process is undertaken to 

�nd the value of k
u
 such that the resultant force of the concrete and steel is zero. This is most 

e�ciently achieved using a simple piece of software code or spreadsheet. For this particular 

example an Excel spreadsheet using the “Goal Seek” option was utilised to determine the k
u
 

value to be 0.1913 giving a neutral axis depth of 140.5 mm as shown in Figure 4.2.3.1.

Figure 4.2.3.1  – Resultant forces at the pure bending point

The numerical integration for a neutral axis at 140.5 mm is presented in Table 4.2.3.1 and the sum 

of the resultant forces and moments about the plastic centroid arc is presented in Table 4.2.4.2.

Table 4.2.3.1 Numerical integration to determine the concrete compression force at 
the pure bending point

i xci

(mm)
Li

(mm)

Area
(mm2)

Strain Stress
(MPa)

Ci

(kN)
Ci* Xci

(kNm)

1 7.0 149.2 2097 0.002600 58.5 123 861

2 21.1 256.2 3600 0.002326 58.4 210 4427

3 35.1 327.7 4605 0.002053 55.7 257 9006

4 49.2 384.2 5399 0.001779 51.3 277 13607

5 63.2 431.6 6064 0.001505 45.7 277 17495

6 77.2 472.5 6640 0.001232 39.1 259 20028

7 91.3 508.7 7148 0.000958 31.6 226 20622

8 105.3 541.0 7602 0.000684 23.4 178 18739

9 119.4 570.1 8010 0.000411 14.5 116 13880

10 133.4 596.4 8380 0.000137 5.0 42 5578

Total 1964 124243
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From the numerical integration table, the resultant force (C) is 1965 kN

The location of the resultant force is given by 

XRC = ∑
10						C

i
 x

ci  

 =   124243 

 
  = 63.3 mm

Table 4.2.4.2  Resultant forces and moments at pure bending point

Force xi 

(mm)
εi σi  or  ƒco.i

(MPa)
Ai

(mm2)
Fi

(kN)
D/2-xi

(mm2)
Mi

(kNm)

S1 66 0.0015 292 670 195 334 65

S2 164 -0.0005 -90 1339 -121 236 -29

S3 400 -0.0051 -600 1339 -804 0 0

S4 637 -0.0097 -600 1339 -804 -237 190

S5 734 -0.0116 -600 670 -402 -334 134

Cc 63 1964 337 661

C1 66 0.0015 45 670 -30 334 -10

Total 0 1013

At the pure bending point the calculated capacities are:

 N
uo

 = 0 kN;  M
uo 

= 1013 kNm

Applying the capacity reduction factor 0.85 required by AS 3600 and Table 3.7.1.

∅ M
uo  

=  0.85×1013

 =  861 kNm

1964

n=1

			∑10			C
i n=1
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Figure 4.2.4.2  – Axial Force-Moment Interaction curve using parabolic rectangular strain for a section 

with a capacity reduction factor of 0.65

4.2.5 Axial Load – Moment interaction curve

The four key points calculated in the preceding sections are plotted and labelled on the Axial Force 

– Moment Interaction curve shown in Figure 4.2.4.2. A straight line joins the squash load and the 

decompression point. The points between the decompression point and the pure bending point 

have been generated using the same spreadsheet used to calculate the four key points by including 

varying values of ku 
from 1 down to 0.1896, the ku value corresponding to the pure bending point.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 200 400 600 800 1000 1200 1400 1600 1800

A
xi

a
l L

o
a

d
  (

k
N

)

Moment  (kNm)

Interaction Curve 

Squash load

Balance point

Decompression 

point

Bending point



34

5.  Extension to AS 3600

The previous sections of this guide calculated the squash load for a column using the same process 

outlined in AS 3600 for the rectangular stress block method. However, Note 2 of Clause 10.6.1 

con�rms that designers can consider the e�ect of con�nement which potentially o�ers higher 

values for the squash load of a column.  This section of the design guide provides commentary on 

how concrete con�nement can be modelled in a column to derive a more accurate and potentially 

higher, squash load value. Two worked examples are included to demonstrate how the model is 

applied and when it is e�ective to apply.

The other aspect covered in this section is the concept of minimum reinforcement in a column. The 

minimum longitudinal reinforcement rule in AS3600: 2018 Clause 10.7.1 (a), requiring a minimum area 

of 1 per cent of the concrete cross section (0.01Ag) can be traced back to at least AS 1480: 1982 

when the yield strength of reinforcing steel was just 410 MPa. Given yield strengths for columns 

can be as high as 600 MPa consideration should be given to adjusting this value to be in line with the 

higher strengths of reinforcing bars available. 

5.1 E�ect of Con�nement 

Concrete con�nement modi�es the concrete stress-strain relationship allowing higher critical 

strains to be achieved. In Section 3.1 it was noted that the AS 3600 rectangular stress block 

model, under concentric loading of the column, set the maximum strain limit for the steel to be 

0.0025. This limit is set on the basis of ensuring compatibility of the steel strain to the concrete 

strain limit of 0.0025. This strain limit on the steel in turn limits the stress in the 600 MPa steel 

to below its speci�ed characteristic yield strength and hence the full potential of the 600 MPa 

steel is not realised. If the limiting strain in the concrete is increased by con�nement, a higher 

proportion of the potential 600 MPa of the steel can be realised.      

Application of AS 3600 Clause 3.1.4 permits the use of recognized simpli�ed equations to 

determine the stress-strain relationship. Application of the stress-strain equations in the �b 

Model Code, including those related to con�ning of concrete would meet the requirements of 

this clause and is con�rmed by its reference in the AS 3600 Commentary (Standards Australia 

2022). The �b Model Code states that if the con�ned concrete properties are exploited in terms 

of calculations, consideration shall be given to the spalling of the concrete cover and premature 

buckling of the longitudinal reinforcement. 

If su�cient �tments were provided to con�ne the concrete such that the concrete strain could 

reach the squash load could be determined using the following equation 

Nu0.c = α1.c x ƒ'c.c  x Ac.c + As x min ( Es x εc2.c, ƒsy )   (Eq 5.1(a))

Where 

α1.c  = in situ strength factor for concrete (0.9). 

ƒ'c.c = con�ned characteristic concrete strength.

Ac.c = area of concrete core; that is, it excludes the cover concrete area. 

As = area of the steel reinforcement.

Es = Elastic modulus of steel.

εc2.c = ultimate strain in the con�ned concrete.

ƒsy = yield stress of longitudinal bars.
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The AS 3600 Commentary explains that the  in the equation Eq. 3.1(g) includes two components: 

“the in situ strength factor for the concrete (taken as 0.9) and a factor to account for spalling 

of the cover concrete as the applied axial load nears ultimate”. However, in Eq. 5.1(a) it is assumed 

that all the cover concrete has spalled leaving just the core concrete area as denoted by Ac.c and 

therefore α1.c can take the value of 0.9.

The values of ƒ'c.c and εcu.c can be determined using guidance provided by the �b Model Code.  

ƒ'c.c =  ƒ'c [ 
1 + 3.5  ( 

σ2 )¾]   (Eq. 5.1(b))

εc2.c = εcu [ 
1 + 5  ( 

ƒ'c.c 
- 1)]   (Eq. 5.1(c))

εcu.c = εcu2 + 
0.2 σ

2 
/ ƒ'c 

   (Eq. 5.1(d))

Where 

σ
2
 (= σ

3 
) is the e�ective lateral compressive stress at the ultimate limit state due to 

con�nement and  

εc2 and εcu.2 are from Table 2.1

AS 3600 Clause 10.7.3.3 provides guidance to calculate the core con�nement by a simpli�ed 

method which is analogous to those in the �b Model Code. The con�ning pressure (referred to as  

in the �b Model Code) can be calculated using the following expression.

   ƒr.e� =   keƒr   (Eq. 5.1 (e))

Where 

ke = an e�ectiveness factor accounting for the arrangement of �tments - refer to 

Figure 5.1.1.

ƒr = average con�ning pressure on the core cross section taken at the level of the 

�tments

The average con�ning pressure on the core at the level of the �tments shall be calculated as follows:

 ∑m	Ab.�t ƒsy sin θ   (Eq 5.1 (f))

Where

 Ab.�t  = cross sectional area of one leg of �tment

  ƒsy = yield stress of the �tment

 θ = angle between the �tment leg and the con�nement plane

 m = number of �tment legs crossing the �tment plane

 ds = overall dimension measured between centre-lines of the outermost �tments

 s = centre to centre spacing of �tments along the column

AS 3600: 2018 Figure 10.7.3.3 provides details on calculating con�ning pressures on circular, 

square and rectangular cross sections. 

dss

ƒ'c

ƒ'c
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The e�ectiveness factor is calculated as follows

(a)  For rectangular sections

 ke = (1 –   s   ) (1 –   s   )(1 –   nw2   

)  (Eq 5.1 (g))

Where 

 n =  number of laterally restrained longitudinal bars

 w =  average clear spacing between adjacent longitudinal bars

 bc =  core dimension measured between the centrelines of the outermost    

   �tments across the width of the section (refer �gure 5.1.1)

 dc =  core dimension measured between the centrelines of the outermost    

   �tments across the depth of the section (refer �gure 5.1.1)

(b)  For circular sections

ke = (1 –   s   )
2
        (Eq.5.1(h))

6bcdc2bc 2dc

Figure 5.1.1 ƒr and  ke expressions for circular, square and rectangular column sections

ds  

The effec�veness factor shall be calculated as follows

(a) For rectangular sec�on

.1 (f))

number of laterally restrained longitudinal bars
average clear spacing between adjacent longitudinal bars
core dimension measured between the centrelines of the outermost fitments across 
the width of the sec�o refer figure 5.1.1)
core dimension measured between the centrelines of the outermost fitments across
the depth of the sec�on (refer figure 5.1.1)

(b) For circular sec�on

= 1 (Eq.5.1(g))

= 1
2

= 1
2

1
6

= 1
2

1
2

1
6

=
2 . .

=
2 . . (1 + sin )

=
. .

,
. .

(a)
Circular section

(spiral fitment shown dotted)

(c)
Square section

(with 2 square fitments)

(d)
Rectangular sections
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AS 3600 Clause 10.7.3.3 o�ers and alternative calculation for calculating the con�ning pressure 
for rectangular and circular columns. 

   ƒr.e� =   0.5ke
ρ

sƒsy.f     (Eq. 5.1 (h))

Where

ρ
s  = Ab.�t x total perimeter of �tments crossing the section (Eq. 5.1 (i)) 

 Ac = bc x ds

5.2 Example of rectangular column 

This example examines the rectangular column in Section 4.1 and compares the two options 

o�ered in AS 3600 Clause 10.7.3.3 to calculate the con�ning pressure provided by the �tments. 

These values are then utilised to assess the squash load of the column considering the e�ects of 

con�nement.

5.2.1 Calculate e�ective con�ning pressure using method 1 

Figure 5.2.1  – Design Example 3: Rectangular column cross-section

Calculate con�ning pressure in each direction to �nd minimum value using Eq. 5.1(e)

 (a) Across the depth of the column

	 ƒr.d = 
∑m	Ab.�t ƒsy sin θ

   

 = 3 x  
π	x 112

 x 600sin90 

  

 = 1.120  

B = 400 mm

D = 600 mm

Reinforcing steel 

Longitudinal - 8S26 (600 MPa) 

Fitments - S11@300 (600 MPa)

f’c = 40 MPa; 

Cover = 40 mm

= 600 2 × 40 11 = 509 mm

= 400 2 × 40 11 =  309 mm

Ac x s

dss

509x300

4

1
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bss

1

 (b) Across the width of the column

	 	 ƒr.b = 
∑m	Ab.�t ƒsy sin θ

 

  

    = 3 x  
π	x 112

 x 600sin90 

  

   = 1.845  

min (ƒr.d ,ƒr.b)   = min (1.120, 1.845)

   = 1.120

Calculate the e�ectiveness factor of the �tments using Eq. 5.1 (g)

  ke  = (1 –   s   ) (1 –   s   )(1 –   nw2   

)

  s  = 300mm

  n  = 8

  wx = [400 - (2 x 40) - (2 x 11) - (3 x 25.6)] /2

   = 110.6mm

  wy  = [600 - (2 x 40) - (2 x 11) - (3 x 25.6)] / 2

   = 210.6mm

  w  = [(4 x 110.6) + (4 x 210.6)] / 8

   = 160.6mm

  ke = (1 –    300    ) (1 –   300     ) (1 –  8 x  160.62

   )

   = 0.2836

Calculate the e�ective con�ning pressure using Eq. 5.1 (d)

  ƒr.e� = kefr

   = 0.2836 x 1.120

   = 0.318

309x300
4

6bcdc2bc 2dc

2 x309 2 x 509 6 x 309 x 509
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5.2.2 Calculate e�ective con�ning pressure using method 2 for rectangular column sections 

Calculate the volumetric ratio of �tments to concrete using Eq. 5.1 (i)

	 ρ
s
  =  Ab.�t x total perimeter of �tments crossing the section

     

 =  
π	x 112  

X (509 + 309 + 509 + 309 + 509 + 309)

      

 = 0.0049

Calculate the e�ective con�ning pressure using Eq. 5.1 (h)

ƒr.e�  = 0.5ke
ρ

s ƒsy.f

Where

  ke  = 0.2836 (from section 5.2.1)

ƒ
r.e�

   = 0.5 x 0.2826 x 0.0049 x 600

 = 0.417

This 0.417 value compares with the lower value of 0.318 determined using method 1. In this case, 

the lower value can be attributed to the lower con�ning pressure across the depth of the 

column compared with that across the width of the column. Method 1 takes the lower of the 

two values while Method 2 e�ectively takes the average of the two values. For a symmetrical 

column the two values should be similar. For consistency with the �b model method the more 

conservative of value 0.3175 derived using the simpli�ed calculation from Section 5.2.1 will be 

adopted to calculate the parameters for design utilising con�ned concrete. 

5.2.3 Con�ned characteristic concrete strength properties    

Calculate con�ned characteristic concrete strength using Eq. 5.1(b)

	 	 	 ƒ'
c.c 

 = ƒ'
c   [ 

1 + 3.5  ( 
σ2 )¾]

Where  σ
2
 = ƒr.e�

	 	 	 ƒ'
c.c 

 = 40
 [ 

1 + 3.5  ( 0.3175 )¾]
 = 43.7 MPa

Calculate the strain at peak stress of the con�ned concrete using Eq. 5.1(c)

 ε
c2.c  

 = ε
cu   [ 

1 + 5  ( 
ƒ'c.c 

  
– 1 

 )]
Where  	

	 ε
cu 

  = 0.002 from Table 2.1 for 40 MPa concrete

	 ε
c2.c 

 = 0.002
   [ 

1 + 5  ( 43.7
  
– 1)] 

     = 0.002925

Ac x s

4

509 x 309 x 300

ƒ'c

40

ƒ'c

40
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5.2.4 Squash load considering con�ned concrete

Calculate the squash load using Eq. 5.1(a) 

 N
u0.c  

= α
1.c

 x ƒ'c.c x Ac.c + As x min ( Es x εc2.c, ƒsy )

 As      
 
= 8 x ( π	x	25.62 )

        = 4118mm2

 N
u0.c  

= 0.9 x 43.7 x (309 x 509 - 4118) + 4118 x (2 x 105 x 0.002925)

  
 
= 8434 kN

 ∅N
u0.c

 = 0.65 x 8434

        = 5482 kN

The 5482 kN considering the impact of concrete con�nement compares with 6551 kN for the 

squash load calculation to AS 3600. The explanation for the lower value is that when the load in 

the concrete causes it to exceed the concrete's peak stress capacity, the concrete cover spalls. 

While the �tments are able to con�ne the concrete core, they are not able to con�ne the concrete 

cover. For larger columns the area of the concrete core is proportionally larger than the concrete 

cover so the increase in strength of the concrete core may exceed the reduction in strength due 

to the loss of the cover. It should also be noted that in this example the concrete con�nement 

allowed the concrete strain to reach 0.0029 which in turn allowed the steel to reach a stress of 

580 MPa. Closer �tment spacing does allow a higher concrete stress, but the maximum squash 

load is still less than the AS 3600 value in this case. 

4
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5.3 Example of large circular column  

This example considers a large circular column to illustrate how the additional capacity of the 

con�ned concrete and the corresponding ultimate strain at peak load allowing the longitudinal 

reinforcement to reach it yield strength will more than compensate the reduction in capacity 

due to the loss of the concrete cover.

Figure 5.2.2 – Design Example 4: Circular column

5.3.1 Calculate squash load using AS 3600

Calculate the squash load to AS 3600 using Eq. 3.1(g). 

 Nuo = ( α
1
 x ƒ'c x

 
Ac)  + (As x σs 

)

Where

  ƒ'
c  

 
  
 = 65 MPa

α
1
 using Eq 3.1(b) is: 	 	

  α
1  

: 0.72 ≤ 1.0 – 0.003 x 65 ≤
 
0.85

	
 

α
1
 = 0.805

 As = 20 x π	x	32.92

 =  17,002 mm2

 Ac =  π	x 12002

   –  17,002 = 1,113,971 mm2

 σs = 500 MPa (limited by concrete strain)

Substituting gives: 

 N
u0 

= (0.805 x 65 x 1,113,971) + (17,002 x 500)

       
 
= 66,789,533 N

       = 66,790 kN

 ∅N
u0  

= 0.65 x 66,790 kN

       
  

= 43,410kN

4

4

D = 1200 mm

Reinforcing steel 

Longitudinal -20S33 (600 MPa) 

Fitments- S18@300 (600 MPa)

Concrete

ƒ’c = 65 MPa; 

Cover = 40 mm

= 1200 2 × 40 18 = 1102 mm
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5.3.2 Calculate e�ective con�ning pressure method 1

Calculate con�ning pressure using the equation from Fig 5.1.1 (a)

	 ƒ
r  

  = 
  

2Ab.
�t ƒsy

	 ƒ
r  

 = 
 
2 x   

π  x 18.32

    x 600

  = 0.9550

Calculate the e�ectiveness factor of the �tments using Eq. 5.1.1 (g)

	 k
e  

 = (1 –   
s

       )
2

	 k
e 
   = (1 –   

300
         )

2

 
  

 = 0.7463

Calculate the e�ective con�ning pressure using Eq. 5.1 (d)

	 ƒ
r.e�  

 = k
e
ƒ

r

	 	   = 0.7463 x 0.9550

 
  

 = 0.713

        

5.3.3 Con�ned characteristic concrete strength properties    

Calculate con�ned characteristic concrete strength using Eq. 5.1(a)

	 ƒ'
c.c 

 = ƒ'
c   [ 

1 + 3.5  ( σ2
 )¾]

  

Where   σ
2 
= ƒ

r.e�

	 ƒ'
c.c 

 = ƒ'
c  

65
 [ 

1 + 3.5  ( 0.7086 )¾]

   = 72.7 MPa

Calculate the strain at peak stress of the con�ned concrete using Eq. 5.1(b) 

	 ε
c2.c  

 = ƒ'
c   [ 

1 + 5  ( 72.7
  
– 1 

 )]

	 ε
cu 

 = 0.0024 from Table 2.1 for 40 MPa concrete

	 ε
c2.c 

 = 0.0024
   [ 

1 + 5  ( 72.7
  
– 1)] 

  = 0.0038

 

ƒ'c

65

65

65

d
s
s

1102 x 300
4

2d
s

2 x 1102
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5.3.4 Squash load considering con�ned concrete

Calculate the squash load using Eq. 5.1(a)

N
u0.c

 = α
1.c 

x ƒ'
c.c
	x A

c.c
 + A

s
  x min ( E

s
 x ε

c2.c' 
ƒ

sy 
)

   

Where

As  = 20 x π	x	32.92

 =  17002 mm2

Ac.c =  π	x 11022

   –  17002 = 936269 mm2

N
u0.c

 = 0.9 x 72.7 x 936269 + 17002 x 600

 = 71468314 N

 = 71468 kN

∅N
u0

 = 0.65 x 71468

 = 46550 kN

The squash load considering con�ned concrete of 46 550 kN compares with the lower value 

of  43 410 when con�nement of the concrete is ignored. This example demonstrates for large 

columns, the reduction in capacity with the loss of cover associated with the con�ned concrete 

model is more than compensated by the additional concrete stress in the core and the 

additional strain allowing the full utilisation of the 600 MPa steel. 

4

4
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5.4 Minimum reinforcement requirements

AS 3600: 2018 Clause 10.7.1 relates to the minimum cross-sectional area of longitudinal reinforcing 

steel which limits the full utilisation of 600 MPa steels. This clause requires 1 per cent reinforcing 

steel based on the gross cross-sectional area of the column except it may be reduced, if the column 

has a larger area than required for strength to 0.1 ∅N/ƒ
sy

. The minimum value of 1 per cent has been 

in the reinforced concrete Standard as far back as AS 1480: 1982 when the typical grades of steel 

were 410 MPa. The AS 3600 Commentary (Standards Australia 2022) states that this is to provide 

resistance to accidental bending and to provide some restraint to creep and shrinkage to avoid 

yielding of the reinforcement.  Higher strength steels typically allow lower quantities to be used, 

so minimum requirements need to be examined to ensure they do not unnecessarily limit the full 

utilisation of the higher strength steel.

Both moment capacity in the column to resist bending and yielding of the reinforcement due to 

creep and shrinkage are directly related to the yield strength of the steel. If the yield strength of 

the steel is increased from 410 MPa to 600 MPa it is reasonable to argue that the minimum area 

of reinforcing steel can be reduce by the same proportion such that the force capacity of the 

reinforcing bars remains unchanged; that is, from 0.01Ag to 0.0068Ag. 

A proposal to reduce the minimum reinforcement requirement by over 30% may seem extreme but 

it is reasonable if examined rationally. It is likely that this clause in the Standard has simply not been 

reviewed and updated in the last 40 years as the AS 3600 Commentary indicates the �gure should 

be related to the yield strength of the steel. The standard yield strengths since AS 1480: 1982 has 

been raised twice, �rstly to 500 MPa and now to 600 MPa with no changes to this minimum value 

or to make it a function of the yield strength. The �b Model Code (2013) Clause 7.13.5.4 requires 

the minimum longitudinal reinforcement to be 0.2%. Furthermore, for large columns it permits 

designers to just consider the column as a concrete tube having 200 mm thick walls for the purpose 

of calculating the concrete area. 

Designers may wish to exercise their engineering judgement based on the preceding information 

and adopt a value for the minimum longitudinal reinforcement in a concrete column of A
cs.min

 as the 

larger of 

(a) 0.01 x 500 / ƒ
sy

(b) 0.15N* / ƒ
sy

This value strikes the balanced as it is less conservative than the current requirements of  

AS3600: 2018 and more conservative than the �b Model Code. The proposed minimum value is 

also a function of the yield strength, so it is consistent with the rationale to provide bending 

capacity for unintended loads and yielding capacity for creep and shrinkage. Designs using 

600 MPa steels can initially adopt 0.83% as the minimum value for determining the axial force – 

moment diagram and then do a simple check to ensure 0.15N* < A
st
ƒ

sy
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7. Appendix A – SENSE 600®     
 properties

SENSE 600® reinforcing steels are produced to AS/NZS 4671 in diameters that provide an equivalent 

design load capacity to standard diameter 500 MPa reinforcing steel bars. 

 

Table A7.1 provides details of the diameters and areas of SENSE 600® reinforcing bars.  

Table A7.1 SENSE 600® Equivalent Force capacity bars

600 MPa 500 MPa Load Capacity

Designation Dia (mm) Area (mm2) Dia (mm) kN

S11 11.0 94 12 57

S15 14.6 168 16 101

S18 18.3 262 20 158

S22 21.9 377 24 227

S26 25.6 513 28 308

S30 29.2 670 32 403

S33 32.9 848 36 509

S37 36.5 1050 40 629
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8. Appendix B – Closed-form    
  solutions for parabolic stress   
  distributions

For designers undertaking manual calculations with a calculator for a rectangular column, closed 

form solutions such as those used in Example 1 are more convenient to use than numerical integration. 

This Appendix provides the closed form solutions for each of the characteristic concrete strengths 

in Table 2.1 to calculate the concrete compressive force and its location per unit width.

  
Figure B1 – Resultant forces per unit width for rectangular parabolic stress distributions

Table B1 – Closed form solutions for the concrete compressive force per unit width

n 2 1.49 1.40

=  . . .

= . . .

= .
+

. . . . . .

= . . . . . . .

=
+

+

= . . .

= + . . . . . .

=
+

+

0.6429 0.4460 0.3749

0.4160 0.3622 0.3547
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