$\$$ SENSE 600° TrenchMesh

SENSE 600º Design Guide for Residential Footings

Disclaimer:

THIS DOCUMENT PROVIDES GENERAL GUIDANCE ONLY - SEEK PROFESSIONAL ADVICE

The information provided in this document is general guidance only. You should seek professional advice before relying on any of the information in this document. To the extent permitted by law, InfraBuild, the authors, publishers and editors expressly disclaim any liability for personal injury, death, or loss or damage directly or indirectly resulting from relying on this document. InfraBuild reserves the right to change specifications and availability of the products at any time.

Copyright © 2024, InfraBuild Australia Pty Ltd ABN 91631112 457. All rights reserved. This document (in full or part) must not be reproduced, copied, modified, adapted, translated, republished, uploaded or posted to any website or other online platform, publicly displayed, distributed for commercial purposes, or electronically transmitted or communicated in any way, without the express prior written permission of the copyright owner.

Document: T07 V1.2

March 2024

Preface

The demand for sustainable construction has driven product manufacturers in Australia and around the world to conduct research and development into innovative products which offer improved environmental credentials. Given steel is already one of the most recycled materials in construction, and certainly the highest in terms of value, the logical progression is to look further up the waste hierarchy of - Reduce, Reuse and Recycle. The top of the hierarchy is obviously the best and this is where InfraBuild Steel has a significant focus. InfraBuild Steel has conducted extensive research and development in our own facilities and in collaboration with leading Universities in Australia, to produce higher strength grades of steel designed to reduce the mass of steel consumed, in the search for more sustainable construction solutions.

Changes to Australian Standards, that now recognise these higher strength grades, will facilitate adoption in design and construction using these steels. In 2018 changes to AS 3600 - Concrete structures and in 2019 changes to AS/NZS 4671 - Steel for the reinforcement of concrete, provided the reinforced concrete industry the opportunity to explore the benefits offered by higher strength, ductile reinforcing steels. Submissions have been made to Standards Australia to revise AS 2870 - Residential slabs and footings, to include higher grades of steel. However, a revision to an Australian Standard generally takes considerable time.

Significant sustainability benefits can be achieved using higher strength steels particularly in reinforced concrete elements that are governed predominately by strength, rather than serviceability. This publication was produced to assist designers to incorporate high strength steels into footing designs in order to take advantage of the sustainability benefits they offer. This publication is written to align with the current Australian Standard AS 2870 so that designers familiar with the Standard will be familiar with how this document should be used.

Importantly, this publication contains the designs which have a current CodeMark Certificate of Conformity. This means that the designs contained in this Guide are deemed-to-satisfy the provisions of the BCA Volume 2 of the National Construction Code and should be used just the same as the deemed-to-comply designs in AS $\mathbf{2 8 7 0}$ Section 3.

SENSE 600°

Contents

1. Scope 5
2. SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ 6
3. How to use this Guide 8
3.1 Design Example 1 8
3.2 Example 2 9
4. Structural Design 13
4.1 Ultimate Strength 13
4.2 Ductility 14
4.3 Footing System Stiffness 14
5. Alternative SENSE 600^{\circledR} Standard Designs 16
5.1 Stiffened Raft Slabs 16
5.2 Footing Slabs 18
5.3 Waffle Rafts 18
5.4 Stiffened Slab with Deep Edge Beam 20
5.5 Strip Footings 21
6 Appendix A 23
A1.1 Sagging Mode $\left(M_{u}{ }^{+}\right)$ 23
A1.2 Hogging Mode ($M_{u}{ }^{-}$) 24
A2 Footing Ductility 25
6. Appendix B 28
7. Appendix C 34

1. Scope

This Design Guide provides information on the use InfraBuild's range of SENSE 600^{\circledR} TrenchMesh ${ }^{\text {™ }}$ and bars in residential footings. The Trench Mesh is manufactured from SENSE 600^{\circledR} bar, a 600 MPa , Ductility Class N (Normal Ductility) bar, meeting the requirements of AS/NZS 4671. It considers the deemed-to-comply designs in Section 3 of AS 2780: 2011 and offers alternatives to the use of 500 MPa, Class L trench mesh and 500 MPa Class N bar, based on the National Construction Code's Performance Solution methodology. This means that the solutions presented with SENSE 600 ${ }^{\circledR}$ TrenchMesh ${ }^{\text {TM }}$ and bars have an equivalent level of performance to those in AS 2870. A CodeMark Certificate of Conformity from the Australian Building Code Board certified by Global-Mark means that these alternate designs are deemed-to-comply with the BCA Volume 2 of the National Construction Code.

The alternatives cover the following footing types:

- Stiffened raft slabs
- Footing slabs
- Waffle rafts
- \quad Stiffened slab with deep edge beam
- Strip footings

Site classification is not covered in this Design Guide. Designers should refer to AS 2870 for guidance on the site classification.

Designers applying engineering principles to design footing should continue to refer to the guidance provided by AS 2870, the Standards Australia Handbook SAA HB28 - The design of residential slabs and footings, and any additional reference they would normally use. However, SENSE 600® TrenchMesh ${ }^{T M}$ should be considered for use in those designs given its superior sustainability credentials and ductility.

Reference should also be made to AS 2870 for the detailing and construction requirements of the footings. However, where they differ from those required for 500 MPa trench mesh, they are specifically covered in this guide.

A full copy of the Certificate of Conformity for SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ and SENSE 600^{\circledR} Reinforcing Bar for use in Residential Footings follows this page.
The Certificate of Conformity No. CM30155 Rev0 can be accessed here
wwww.infrabuildsensesolutions.com

Certificate number: CM30155 Rev0

Description of product:

SENSE 600° bar has minimum characteristic strength ($f_{s y}$) of 600 MPa and Ductility Class N
($\mathrm{A}_{\mathrm{gtt}}>5 \%$) as defined in AS/NZS 4671:2019 - Steel for the reinforcement of concrete.
SENSE 600° TrenchMesh consist of a minimum of three to a maximum of six SENSE 600° Iongitudinal steel reinforcing bars welded into a mesh with cross wires to maintain the distance between bars.
RITORY VARIATION(S)

Volume Two including ABCB Housing Provisions	
H1P1	

BCA 2022

Structural reliability and resistance

ㅎ.

ncrete, for
igned to AS 2870:2011 - Residential slabs and footing
$1 \&$ Class 10 buildings.
MPLIES WITH THE FOLLOWING BCA PROVISIONS AND
TATE OR TER
Volume One

Type and/or use of product:
SENSE 600° TrenchMesh ${ }^{\text {™ }}$ an

3
global-mark
Global-Mark Pty Ltd,
Suite 4.07
32
North Ryde NSW 2113
民!едรทロ
Tel: +61298860222 www.Global-Mark.com.au Certificate Holder:

InfraBuild Australia
Pty Ltd
evel 28
88 Phillip Street
Sydney NSW 2304
Tel: 1800178335
www.infrabuild.com

Scope of certification: The CodeMark Scheme is a building product certification scheme. The rules of the Scheme are available at the ABCB website www.abch.gov.au. This Certificate of Conformity is to confirm that the relevant requirements of the Building Code of Australia ($B C A$) as claimed against have been met. The responsibility for the product performance and its fitness for the intended use remain
with the certificate holder. The certification is not transferrable to a manufacturer not listed on Appendix A of this certificate.
Disclaimer: The Scheme Owner, Scheme Administrator and Scheme Accreditation Body do not make any representations, warranties or guarantees, and accept no legal liability whatsoever arising from or connected to, the accuracy, reliability, currency or completeness of any material contained within this certificate; and the Scheme Owner, Scheme Administrator and Scheme Accreditation Body disclaim to
the extent permitted by law, all liability (including negligence) for claims of losses, expenses, damages and costs arising as a result of the use of the product(s) referred to in this certificate,
in placing the CodeMark mark on the product/system, the certificate holder makes a declaration of compliance with the certification standard(s) and confirms that the product is identical to the product
certified herein. In issuing this Certificate of Approval Global-Mark has relied on the expertise of external bodies (laboratories, and technical experts). fercephares

Herve Michoux
Global-Mark Managing Director
Peter Gardner
Unrestricted Bulldi
Date of Issue: 13/12/2023

Certificate number: CM 30155

Lquivalent Load Capacities - Steel Areas and Yield Strength SENSE 600^{*} TrenchMesh'm is given in Table 2a:

500L Trench Mesh				SENSE 600* TrenchMesh'm			
Designation	Total Area (mm2)	Grade fsy (MPa)	Load Capacity (kN)	Designation	Total Area (mm2)	Grade fsy (MPa)	Load Capacity (kN)
3-L11 ${ }^{\text {M }}$	270	500	135	3-S101M	225	600	135
4-111TM	360	500	180	4-S10TM	300	600	180
5-L11IM	450	500	225	5-S101M	375	600	225
6 L11TM	540	500	270	6 S10TM	450	600	270
3-L12TM	330	500	167	3-S11TM	283	600	170
4-L12TM	440	500	222	4-S11TM	377	600	226
5.112TM	550	500	278	5. S11TM	471	600	283
6-L12IM	660	500	334	6-S11IM	565	600	339
500N Trench Mesh				SENSE 600° TrenchMesh ${ }^{\text {™ }}$			
3N16	603	500	302	3-515TM	503	600	302
4N16	804	500	402	4-S15TM	670	600	402

Equivalent Load Capacities - Steel Areas and Yield Strengths SENSF 600° Steel Reinforcing Bars is given in Table 2 b :

Table 2b:							
500 N Bars				SENSE 600° Steel Reinforcing Bar			
Designation	Total Area (mm2)	Grade fsy (MPa)	Load Capacity (kN)	Designation	Total Area (mm2)	Grade fsy (MPa)	Load Capacity (kN)
N12	113	500	56.5	S11	94.2	600	56.5
N16	200	500	101	S15	168	600	102

SENSE 600^{*} TrenchMesh ${ }^{\text {tw }}$ and SENSE 600^{*} Steel Reinforcing Bar shall be specified in accordance with the requirements of:

- AS 2870:2011 - Residential slabs and footings, and
- InfraBuild SENSE 600° - Design Guide for Residential Footings T07 V1.0, October 2023.

2. SENSE $600^{\circledR}{ }^{\text {TrenchMesh }}{ }^{\text {TM }}$

SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ is manufactured utilising SENSE 600^{\circledR} bar which has a yield strength of 600 MPa and is Ductility Class $\mathrm{N}\left(A_{\mathrm{gt}} \geq 5 \%\right)$. The obvious benefits over 500L trench mesh are the additional strength and the superior ductility. The additional strength means that a smaller area of steel has the capacity to carry the same tensile load and the ductility means that there is greater opportunity for the redistribution of loads in the footing.

The range of SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ products are manufactured in equivalent load capacity diameters with the same number of bars as the equivalent 500L trench mesh. The simplest way to explain this is by way of example:

Consider a 3-L11TM trench mesh, which has $3 \times 10.7 \mathrm{~mm} 500 \mathrm{MPa}$, Ductility Class L bars.
Each bar has a calculated tensile load capacity equal to:
$\pi \times 10.7^{2} / 4 \times 500 \times 10^{-3}=45 \mathrm{kN}$
3 bars provide a total tensile load capacity of 135 kN .

Now consider a 3-S10TM, the equivalent SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ which has $3 \times 9.8 \mathrm{~mm} 600 \mathrm{MPa}$, Ductility Class N bars.

Each bar has a calculated tensile load capacity equal to:
$\pi \times 9.8^{2} / 4 \times 600 \times 10^{-3}=45 \mathrm{kN}$

3 bars provide a total tensile load capacity of 135 kN
Table 2.1 shows the details of the SENSE 600^{\circledR} TrenchMesh ${ }^{T M}$ range compared to the standard 500 L meshes and 500N (16 mm) bars.

Table 2.1: Details of SENSE 600^{\circledR} TrenchMesh ${ }^{\top}$

$500 \mathrm{~L}\left(f_{\text {sy }}=500 \mathrm{MPa}\right)$					SENSE $600{ }^{\circledR}\left(f_{\text {sy }}=600 \mathrm{MPa}\right)$				
Trench mesh	$\begin{gathered} d_{b} \\ (\mathrm{~mm}) \end{gathered}$	Area ($\mathrm{mm}^{2} / \mathrm{bar}$)	Total Area (mm^{2})	Load Capacity (kN)	TrenchMesh ${ }^{\text {TM }}$	$\begin{gathered} d_{b} \\ (\mathrm{~mm}) \end{gathered}$	Area $\left(\mathrm{mm}^{2} / \mathrm{bar}\right)$	Total Area (mm^{2})	Load Capacity (kN)
3-L11TM	10.7	89.9	270	135	3-S10TM	9.8	74.9	225	135
4-L11TM			360	180	4-S10TM			300	180
5-L11TM			450	225	5-S10TM			375	225
6-L11TM			540	270	6-S10TM			450	270
3-L12TM	11.9	111	330	167	3-S11TM	11.0	94.2	283	170
4-L12TM			440	222	4-S11TM			377	226
5-L12TM			550	278	5-S11TM			471	283
6-L12TM			660	334	6-S11TM			565	339
3-L16TM	16	201	603	302	3-S15TM	14.6	168	503	302
4-L16TM			804	402	4-S15TM			670	402
3N16	16	201	603	302	3515	14.6	168	503	302
4N16			804	402	4S15			670	402

d_{b}-bar diameter

Table 2.2: Details of SENSE 600° Bars

$500 \mathrm{~N}\left(f_{\mathrm{sy}}=500 \mathrm{MPa}\right)$				SENSE 600 ${ }^{\circledR}\left(f_{\mathrm{sy}}=600 \mathrm{MPa}\right)$			
Designation	Diameter (mm)	Area $\left(\mathrm{mm}^{2}\right)$	Load Capacity (kN)	Designation	Diameter (mm)	Area $\left(\mathrm{mm}^{2}\right)$	Load Capacity (kN)
N12	12	113	56.5	S 11	11.0	94.2	56.5
N16	16	201	101	S 15	14.6	168	102

3. How to use this Guide

The designs in this Guide have a CodeMark Certificate of Conformity which is evidence of suitability recognised by the National Construction Code, specifically the Building Code of Australia, that the product, and form of design is fit for their intended purpose to achieve the relevant requirements of the NCC. Refer to Figure 3.1

A5G3 Evidence of suitability - Volumes One and Two (BCA)

[2019: A5.2]
(1) Subject to A5G5, A5G6, A5G7 and A5G9, evidence to support that the use of a material, product, form of construction or design meets a Performance Requirement or a Deemed-to-Satisfy Provision may be in the form of any one, or any combination of the following:
(a) A current CodeMark Australia or CodeMark Certificate of Conformity.
(b) A current Certificate of Accreditation.
(c) A current certificate, other than a certificate described in (a) and (b), issued by a certification body stating that the properties and performance of a material, product, form of construction or design fulfil specific requirements of the BCA.
(d) A report issued by an Accredited Testing Laboratory that-
(i) demonstrates that a material, product or form of construction fulfils specific requirements of the BCA; and
(ii) sets out the tests the material, product or form of construction has been subjected to and the results of those tests and any other relevant information that has been relied upon to demonstrate it fulfils specific requirements of the BCA .
(e) A certificate or report from a professional engineer or other appropriately qualified person that-
(i) certifies that a material, product, form of construction or design fulfils specific requirements of the BCA; and
(ii) sets out the basis on which it is given and the extent to which relevant standards, specifications, rules, codes of practice or other publications have been relied upon to demonstrate it fulfils specific requirements of the BCA.

Figure 3.1 - Extract from NCC BCA Volume 2

The following design examples demonstrate how the CodeMark Certificate of Conformity designs in Section 5 of this Guide can be used.

3.1 Design Example 1

Consider a single storey residential building with the following design criteria:
Footing Type: Waffle Raft
Site Class: Class M - D
Type of Construction: Articulated Masonry Veneer

Design:

The appropriate design table is from Section 5 - Alternative SENSE $600{ }^{\circledR}$ and Standard Design Table 5.3 Waffle Raft Designs with SENSE 600 ${ }^{\circledR}$ TrenchMesh ${ }^{\text {™ }}$

Table 5.3: Waffle Raft Designs with SENSE $600{ }^{\text {® }}$ TrenchMesh ${ }^{\text {TM }}$: refer to Figure 5.3								
Site class	Type of Construction	Depth [D] (mm)	Bottom Reinforcement				Slab Mesh	
			Edge Beam Alternatives Bottom		Internal Beam Alternatives Top and Bottom		Slab Length (m)	
			500 MPa	SENSE 600 ${ }^{\text {® }}$	500 MPa	SENSE 600 ${ }^{\text {® }}$	<20	$\geq 20-<30$
Class M	Clad frame	310	3-L11TM	3-S10TM	1N12	1511	SL72	SL82
	Articulated masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL82
	Masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL82
	Articulated full masonry	610	2×3-LITMM	2x3-S10TM	1N16	1S15	SL72	SL82
	Full masonry	-	-	-	-	-	-	-
Class M-D	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL92
	Articulated masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL92
	Masonry veneer	385	2x3-L11TM	2×3-S10TM	1N16	1 S15	SL72	SL92
	Articulated full masonry	610	2x3-L11TM	2x3-S10TM	1N16	1S15	SL72	SL92
	Full masonry	-	-	-	-	-	-	-
Class H1	Clad frame	310	3-L11TM	3-S107M	1N12	1 S11	SL82	SL92
	Anticulated masonry veneer	385	3-L11TM	3-S10TM	1N12	1 S11	SL82	SL92
	Masonry veneer	460	2×3-LIITM	2×3-S10TM	1N16	1515	SL82	SL92
	Articulated full masonry	610	2×3-LIITM	2×3-S10TM	1N16	1S15	SL82	SL92
	Full masonry	-	-	-	-	-	-	-
Class H1-D	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S 11	SL82	SL92
	Articulated masonry veneer	385	3-L11TM	3-S10TM	1N12	1 S11	SL82	SL92
	Masonry veneer	460	2×3-LIITM	2x3-S10TM	1N16	1515	SL82	SL92
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-
Class H2	Clad frame	310	3-L11TM	3-S10TM	2N12	1 S11	SL82	SL92
	Articulated masonry veneer	385	2×3-LIITM	2×3-S10TM	2N16	1S15	SL82	SL92
	Masonry veneen	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-
Class H2-D	Clad frame	385	2×3-LI1TM	2×3-S10TM	1N16	1515	SL82	SL92
	Articulated masonry veneer	460	2×3-LIITM	2×3-S10TM	1N16	$1 \mathrm{S15}$	SL82	SL92
	Masonry veneer	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-

Figure 3.1.1 - Table 5.3 Extract for Design Example 1
Using Table 5.3 select Class M-D and then Articulated Masonry Veneer, then reading across gives the CodeMark Certified design.

Depth of Waffle Raft: 310 mm
Reinforcement for External Beam: 3-S10TM
Reinforcement for Internal Ribs: Either 1N12 top and bottom or 1S11 top and bottom.

SENSE 600

3.2 Example 2

Consider the same residential building as in Example 1. However, in this case the waffle raft has already been designed with 500 MPa using the deemed-to-comply designs from Section 3 of AS 2870. That is, the design has:

Depth of Waffle Raft: 310 mm

Reinforcement for External Beam: 3-L11TM
Reinforcement for Internal Ribs: 1N12 top
One way to execute the redesign is to use the same process as in Design Example 1
Alternatively as the original design used the deemed-to-comply designs from Section 3 of AS 2870 to specify the 500 MPa reinforcing steel, the SENSE 600^{\circledR} alternatives can be simply read from Tables 2.1 and 2.2 as appropriate.

$500 \mathrm{~L}\left(f_{\text {sy }}=500 \mathrm{MPa}\right)$					SENSE $600{ }^{\circledR}\left(f_{\text {sy }}=600 \mathrm{MPa}\right)$				
$\begin{aligned} & \text { Trench mesh/ } \\ & \text { Bar } \end{aligned}$	$\begin{gathered} d_{b} \\ (\mathrm{~mm}) \end{gathered}$	Area $\left(\mathrm{mm}^{2} / \mathrm{bar}\right)$	Total Area (mm^{2})	Load Capacity (kN)	TrenchMesh ${ }^{\text {m/M }}$	$\begin{gathered} d_{\mathrm{b}} \\ (\mathrm{~mm}) \end{gathered}$	Area ($\mathrm{mm}^{2} / \mathrm{bar}$)	Total Area (mm^{2})	Load Capacity (kN)
3-L11TM	10.7	89.9	270	135	3-S10TM	9.8	74.9	225	135
4-L11TM			360	180	4-S10TM			300	180
5-L11TM			450	225	5-S10TM			375	225
6-L11TM			540	270	6-S10TM			450	270
3-L12TM	11.9	111	330	167	3-S11TM	11.0	94.2	283	170
4-L12TM			440	222	4-S11TM			377	226
5-L12TM			550	278	5-S11TM			471	283
6-L12TM			660	334	6-S11TM			565	339
3-L16TM	16	201	603	302	3-S15TM	14.6	168	503	302
4-L16TM			804	402	4-S15TM			670	402
3N16	16	201	603	302	3N15	14.6	168	503	302
4N16			804	402	4N15			670	402

[^0]
Figure 3.2.1 - Table 2.1 Extract for Design Example 2

The 3-L11TM reinforcement for external beams can be substituted with SENSE 600 ${ }^{\circledR}$ TrenchMesh ${ }^{\text {TM }}$ 3-S10TM.

Table 2.2 can be used if the design requires that the reinforcement for internal ribs also be SENSE 600^{\circledR}. This table shows that the N12 bar top and bottom for internal ribs can be substituted with a SENSE 600^{\circledR} S11 bar top and bottom.

Table 2.2: Details of SENSE $600{ }^{\text {® }}$ Bars							
$500 \mathrm{~N}\left(f_{\text {sy }}=500 \mathrm{MPa}\right)$				SENSE $600{ }^{\circledR}\left(f_{\text {sy }}=600 \mathrm{MPa}\right)$			
Designation	Diameter (mm)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	Load Capacity (kN)	Designation	Diameter (mm)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$	Load Capacity (kN)
N12	12	113	56.5	S11	11.0	94.2	56.5
N16	16	201	101	S15	14.6	168	102

Figure 3.2.2 - Table 2.2 Extract for Design Example 2

4. Structural design

The design requirements for the footing systems in AS 2870 are generally consistent with those in AS 3600. However, it is clearly noted in AS 2870 that the design provision of AS 2870 should take precedence over AS 3600 where they are not consistent. The guidance in this document follows this same principle.

The structural design aspects that are relevant when considering a change to the reinforcement of a footing design are:

1) The ultimate moment capacity $-M_{u}$
2) The ductility of the steel and the footing
3) The stiffness of the footing

Each of these factors were assessed to produce the alternate designs in Section 4 of this Guide. The approach followed was to substitute the equivalent load capacity SENSE 600® TrenchMesh ${ }^{\text {™ }}$ for the equivalent 500L trench mesh or 500N bar for the deemed-to-comply designs in AS 2870 and determine what impact the substitution had on the 3 structural design aspects noted above.

4.1 Ultimate Strength of a Footing

The ultimate strength of a footing can be calculated using well known formulae found in most textbooks as well as in SAA HB28 - 1997 commonly known as the 1997 Commentary to AS 2870. The Commentary indicates that the designs in AS 2870 consider the strip footings and stiffening beams as singularly reinforced rather than doubly reinforced with compression and tension reinforcement, so this simplifies the comparison even further.

Consider Figure 4.1 below for a sagging mode (or positive moment). The ultimate moment can be determined using the formula:

$$
M_{u}=A_{\mathrm{st}} \times f_{\mathrm{sy}} \times L
$$

Figure 4.1 - Ultimate Moment Capacity - M_{u}

However, if equivalent load capacity SENSE 600^{\circledR} TrenchMesh $^{\top \pi}$ is used in place of 500L trench mesh then

$$
A_{\text {st }} \times f_{\text {sy (SENSE } \left.600^{\circ}\right)}=A_{\text {st }} \times f_{\text {sy (500L) }}
$$

and the ultimate moment capacity $\left(M_{\mathrm{u}}\right)$ is essentially the same. The lever arm (L) is slightly longer for the SENSE 600^{\circledR} TrenchMesh ${ }^{\text {™ }}$ as the bar is smaller in diameter and hence the ultimate moment is slightly higher. Appendix A contains detailed calculations for the generic case showing the moments are essentially the same.

For a hogging mode (or negative moment) in a stiffened raft the mesh in the slab is in tension and the trench mesh is ignored. The alternative deemed-to-comply solutions in Section 4 of this Guide leaves the slab mesh unchanged from the designs in AS 2870 and therefore the negative moment capacity remains the same.

For strip footings the top and bottom steel is the same and therefore the negative moment capacity is the same as the positive moment capacity.

In summary, substituting SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ for the 500L trench mesh in the deemed-tocomply designs in AS 2870 does not have a negative impact on the ultimate strength of the footing.

4.2 Ductility

A ductile steel means that a load in a cracked zone has a greater capacity of being transferred to a stiffer uncracked zone. Therefore, the performance of a beam is generally improved if a ductile steel is used in place of a low ductility steel. SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ is a Ductility Class N steel and therefore has superior ductility to 500L trench mesh.

Member ductility is important when the cracking moment ($M_{c r}$) of the section is exceeded, as the reinforcement in the design should be sufficient to carry the load. The deemed-to-comply designs in AS 2870 have ultimate moment $\left(M_{u}\right)$ capacities that meet the ductility requirement, that is:

$$
M_{\mathrm{u}}>1.2 M_{\mathrm{cr}}
$$

It is clear from Section 3.1 the substitution of equivalent capacity SENSE 600^{\circledR} TrenchMesh $^{T M}$ for 500L trench mesh does not substantially change the ultimate moment, M_{u}. If the dimensions of the concrete section do not change then the gross section properties of the section do not change and hence the $M_{c r}$ does not change. Calculations demonstrating this are presented in Appendix A.

Therefore, the section ductility of a deemed-to-comply design in AS 2870 does not change when equivalent capacity SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ is substituted for 500L trench mesh.

4.3 Footing System Stiffness

The stiffness of the performance solutions in Section 4 of this Guide were checked using a combination of AS 2870, Section 4 - Design by engineering principles and the deemed-to-comply solutions in Section 3.

HB28 acknowledges that the deflections of reinforced concrete flexural members, including an allowance for creep and shrinkage warping, is a complex topic. AS 2870, Clause 4.4 (f), simplifies this by permitting the calculation of the deflection using an effective modulus of elasticity of $15,000 \mathrm{MPa}$ compared to the value in AS 3600 of $24,000 \mathrm{MPa}$ for 20 MPa concrete. This Clause requires the value $l_{\text {eff }}$ to be as defined in AS 3600.

SENSE 600

For consistency with AS 2870 and HB28, the effective moment of inertia values ($l_{\text {eff }}$) for stiffness and deflection are calculated using Branson's Formula which was included in AS 3600: 2009 -

$$
I_{\mathrm{eff}}=I_{\mathrm{cr}}+\left(I_{\mathrm{g}}-I_{\mathrm{cr}}\right) \times\left(\frac{M_{\mathrm{cr}}}{M_{\mathrm{ser}}}\right)^{3} \leq I_{\mathrm{g}}
$$

Where
$I_{\mathrm{cr}} \quad=$ Cracked transformed moment of inertia
$I_{g} \quad=$ Gross moment of inertia (uncracked)
$M_{\text {ser }} \quad=$ Maximum service moment
$M_{\text {cr }} \quad=$ Cracking moment of section
AS 2870, Clause 1.4.2, requires that the design ultimate moment M^{*} be calculated using the load factors in AS/NZS 1170.1 - Structural design actions. Part 1. For dead loads this factor is 1.2 and for live loads it is 1.5. Furthermore AS 2870, Clause 4.4 (f), requires

$$
M^{\star} \leq \varnothing M_{u}
$$

Where
$\varnothing \quad=0.8$ from AS 3600: 2009 (Consistent with the edition of the Standard when the deemed-to-comply designs were produced)
$M_{u} \quad=$ Calculated ultimate moment capacity of the section
Therefore
$1.2 M_{\text {ser }}<M^{*} \leq 0.8 M_{u}$
$M_{\text {ser }} \leq 0.8 / 1.2 M_{u}$
That is
$M_{\text {ser }} \leq 0.67 M_{u}$

For each of the designs in AS 2870 Section 3 and Section 4 included in this Design Guide, the values of $I_{g}, I_{\text {cr }}$, and $M_{\text {cr }}$, can be determined accurately by calculation. An upper-bound value of $M_{\text {ser }}$ can be determined using the relationship $M_{\text {ser }} \leq 0.67 M_{u} . M_{\text {ser }}$ can be substituted into Branson's Formula to determine the effective moment of inertia ($l_{\text {eff }}$) for each pair of equivalent deemed-to-comply designs. The comparisons tabulated in Appendix B, indicate that for the stiffened raft, waffle raft and strip footing designs the difference in stiffness between the equivalent solutions using a SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ and a 500L trench mesh is generally less than five per cent and in many cases the upper-bound service load value is less than the cracking moment and thus there is no difference in stiffness between the two solutions. Where there was up to five percent difference in stiffness it was considered not significant enough to require a more detailed analysis, particularly since the $M_{\text {ser }}$ value used was an upper-bound value and a lower value would have reduced the difference even further.

Where the difference in stiffness was in excess of five percent, software (CORD) was used to check ten designs. The checks as detailed in Appendix C showed that the moment of inertia for the required stiffness in all cases was below the calculated effective moment of inertia $\left(l_{\text {eff }}\right)$.

5. Alternative SENSE 600^{\circledR} Standard designs

This section of the SENSE 600^{\circledR} Design Guide is analogous to Section 3 of AS 2870. All the Clauses and their specific requirements apply and should be satisfied except that the SENSE 600 ${ }^{\circledR}$ TrenchMesh ${ }^{\text {TM }}$ options in the following Tables may be used as an alternative to the equivalent 500L trench mesh.

5.1 Stiffened Raft Slabs

A stiffened raft shall be specified in accordance with AS 2870, Clause 3.2. The concrete section sizes, beam spacing and reinforcement requirements shall be as shown in Figure 4.1 and Table 4.1 which includes the SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ alternatives.

Figure 5.1 - Stiffened raft slab designs: refer Table 5.1

SENSE 600°

Table 5.1: Stiffened Raft Slab Designs with SENSE 600° TrenchMesh ${ }^{\text {TM }}$: refer to Figure 5.1							
Site class	Type of Construction	$\begin{aligned} & \text { Depth } \\ & {[D]} \\ & (\mathrm{mm}) \end{aligned}$	Reinforcement				Max Beam Spacing (m)
			Edge Beam Alternatives Bottom		Top Bar Alternatives		
			500 MPa	SENSE 600 ${ }^{\text {® }}$	500 MPa	SENSE $600{ }^{\text {® }}$	
Class S	Masonry veneer Articulated full masonry Full masonry	$\begin{aligned} & 300 \\ & 500 \\ & 700 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \text { 3-L11TM } \\ \text { 3-L11TM } \\ 2 \times 3-\text { L11TM } \end{array}$	$\begin{gathered} \text { 3-S10TM } \\ \text { 3-S10TM } \\ 2 \times 3-\text { S10TM } \end{gathered}$	2N12 2N16	$\begin{aligned} & 2 S 11 \\ & 2 S 15 \end{aligned}$	5
Class M	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry	$\begin{aligned} & 300 \\ & 400 \\ & 400 \\ & 625 \\ & 950 \\ & \hline \end{aligned}$	$\begin{gathered} \text { 3-L11TM } \\ \text { 3-L11TM } \\ \text { 3-L11TM } \\ 3-\text { L11TM } \\ 2 \times 3-L 11 T M \end{gathered}$	$\begin{gathered} \text { 3-S10TM } \\ \text { 2x3-S10TM } \end{gathered}$	2N12 2N16	$2 \mathrm{~S} 11$ $2 S 15$	6
Class M-D	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry	$\begin{gathered} 400 \\ 400 \\ 500 \\ 650 \\ 1050 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 3-L11TM } \\ \text { 3-L11TM } \\ \text { 3-L12TM } \\ \text { 3-L12TM } \\ 2 \times 3-\text { L11TM } \\ \hline \end{gathered}$	$\begin{gathered} \text { 3-S10TM } \\ \text { 3-S10TM } \\ \text { 3-S11TM } \\ \text { 3-S11TM } \\ 2 \times 3-S 10 T M \end{gathered}$	1N12 2N12 2N16 3N16	$\begin{aligned} & 1 S 11 \\ & 2 S 11 \\ & 2 S 15 \\ & 3 S 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
Class H1	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry	$\begin{gathered} 400 \\ 400 \\ 500 \\ 750 \\ 1050 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 3-L11TM } \\ \text { 3-L11TM } \\ \text { 3-L12TM } \\ 2 \times 3-\text { L11TM } \\ 2 \times 3-\text { L12TM } \end{gathered}$	$\begin{gathered} \text { 3-S10TM } \\ 3-S 10 T M \\ 3-S 11 T M \\ 2 \times 3-S 10 T M \\ 2 \times 3-S 11 T M \end{gathered}$	1N12 3N12 2N16 3N16	$\begin{aligned} & 1 S 11 \\ & 3 S 11 \\ & 2 S 15 \\ & 3 S 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
Class H1-D	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry		$\begin{gathered} \text { 3-L11TM } \\ \text { 3-L11TM } \\ 2 \times 3 \text {-L11TM } \\ 2 \times 3-\text { L11TM } \\ 2 \times 3-\text { L12TM } \end{gathered}$	$\begin{gathered} 3-\text { S10TM } \\ 3-\text { S10TM } \\ 2 \times 3-S 10 T M \\ 2 \times 3-S 10 T M \\ 2 \times 3-S 11 T M \end{gathered}$	1N12 2N12 1N16 2N16 3N16	1N11 2811 1S15 $2 S 15$ 3515	4
Class H2	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry	$\begin{gathered} 550 \\ 600 \\ 750 \\ 1000 \end{gathered}$	$\begin{gathered} \text { 3-L11TM } \\ \text { 3-L12TM } \\ 2 \times 3-\text { L11TM } \\ 2 \times 3-\text { L11TM } \end{gathered}$	$\begin{gathered} 3-S 10 T M \\ 3-S 11 T M \\ 2 \times 3-S 10 T M \\ 2 \times 3-S 10 T M \end{gathered}$	2N12 2N12 2N16 2N16	$\begin{aligned} & 2 S 11 \\ & 2 S 11 \\ & 2 S 15 \\ & 2 S 15 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$
Class H2-D	Clad frame Articulated masonry veneer Masonry veneer Articulated full masonry Full masonry	$\begin{gathered} 550 \\ 700 \\ 750 \\ 1000 \end{gathered}$	$\begin{aligned} & 2 \times 3 \text {-L11TM } \\ & 2 \times 3 \text {-L11TM } \\ & 2 \times 3 \text {-L11TM } \\ & 2 \times 3 \text {-L11TM } \end{aligned}$	$\begin{aligned} & 2 \times 3-S 10 T M \\ & 2 \times 3-S 10 T M \\ & 2 \times 3-S 10 T M \\ & 2 \times 3-S 10 T M \end{aligned}$	2N16 2N16 2N16 2N16	$\begin{aligned} & 2 S 15 \\ & 2 S 15 \\ & 2 S 15 \\ & 2 S 15 \end{aligned}$	4

Note: Slab reinforcement for all Site Classes shall be as noted in AS 2870 for Stiffened Raft Designs, specifically
(a) SL72, where slab length $<18 \mathrm{~m}$
(b) SL82, where slab length $\geq 8 \mathrm{~m}$ and <25
(c) SL92, where slab length $\geq 25 \mathrm{~m}$ and <30

5.2 Footing slabs

Footing slabs shall be specified in accordance with Figure 5.2 for Site Class S. SENSE 600^{\circledR} TrenchMesh ${ }^{\text {M }} 3$-S10TM may be used as an alternative to 3-L11TM.

Figure 5.2 - Footing slab for Class S sites for Clad frame, articulated masonry veneer, articulated full masonry or full masonry

5.3 Waffle Rafts

Waffle rafts shall be specified in accordance with AS 2870, Clause 3.4. The concrete section sizes, beam spacing and reinforcement requirements for stiffened rafts shall be as shown in Figure 5.3 and Table 5.3 which includes the SENSE 600^{\circledR} TrenchMesh ${ }^{\text {™ }}$ alternatives.

Figure 5.3 - UVaffle raft designs: refer Table 4.3

SENSE 600

Site class	Type of Construction	Depth [D] (mm)	Bottom Reinforcement				Slab Mesh	
			Edge Beam Alternatives Bottom		Internal Beam Alternatives Top and Bottom		Slab Length (m)	
			500 MPa	SENSE 600®	500 MPa	SENSE 600 ${ }^{\text {® }}$	<20	$\geq 20-<30$
Class M	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S 11	SL72	SL82
	Articulated masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL82
	Masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S 11	SL72	SL82
	Articulated full masonry	610	2×3-L11TM	2×3-S10TM	1N16	1 S15	SL72	SL82
	Full masonry	-	-	-	-	-	-	-
Class M-D	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S 11	SL72	SL92
	Articulated masonry veneer	310	3-L11TM	3-S10TM	1N12	1 S11	SL72	SL92
	Masonry veneer	385	2x3-L11TM	2×3-S10TM	1N16	1 S 15	SL72	SL92
	Articulated full masonry	610	$2 \times 3-L 11 T M$	2x3-S10TM	1N16	$1 \mathrm{S15}$	SL72	SL92
	Full masonry	-	-	-	-	-	-	-
Class H1	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S 11	SL82	SL92
	Articulated masonry veneer	385	3-L11TM	3-S10TM	1N12	1 S11	SL82	SL92
	Masonry veneer	460	2×3-L11TM	2×3-S10TM	1N16	1 S 15	SL82	SL92
	Articulated full masonry	610	2×3-L11TM	2x3-S10TM	1N16	1S15	SL82	SL92
	Full masonry	-	-	-	-	-	-	-
Class H1-D	Clad frame	310	3-L11TM	3-S10TM	1N12	1 S 11	SL82	SL92
	Articulated masonry veneer	385	3-L11TM	3-S10TM	1N12	1 S 11	SL82	SL92
	Masonry veneer	460	2×3-L11TM	2×3-S10TM	1N16	1S15	SL82	SL92
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-
Class H2	Clad frame	310	3-L11TM	3-S10TM	2N12	1 S11	SL82	SL92
	Articulated masonry veneer	385	2×3-L11TM	2x3-S10TM	2N16	1 S15	SL82	SL92
	Masonry veneer	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-
Class H2-D	Clad frame	385	2×3-L11TM	2×3-S10TM	1N16	$1 \mathrm{S15}$	SL82	SL92
	Articulated masonry veneer	460	2×3-L11TM	2×3-S10TM	1N16	$1 \mathrm{S15}$	SL82	SL92
	Masonry veneer	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-

5.4 Stiffened slab with deep edge beam

A stiffened slab with a deep edge beam shall be specified in accordance with AS 2870 Clause 3.5. SENSE $600^{\circledR} 3-$ S10TM TrenchMesh ${ }^{\text {TM }}$ may be substituted for the 3-L11TM as shown in Figure 5.4.

Figure 5.4 - Stiffened slab with deep edge beam for Masonry veneer and articulated masonry veneer with SENSE 600 ${ }^{\circledR}$ TrenchMesh ${ }^{\text {TM }}$ option - Class M site

SENSE 600

5.5 Strip Footings

Strip footings shall be specified in accordance with AS 2870, Clause 3.6. The concrete section sizes, beam spacing and reinforcement requirements for strip footings shall be as shown in Figure 5.5 and Table 5.5 which includes the SENSE 600^{\circledR} TrenchMesh ${ }^{\top M}$ alternatives.

(a) Suspended floors (timber or concrete single-storey construction $<4 \mathrm{kPa}$ dead load)

(b) Infill floor Class A and Class S sites

- Slab mesh;

SL62, when slab length <18000
SL72, when slab length $\geqslant 18000$ and <25000
SL82, when slab length $\geqslant 25000$ and <30000

DIMENSIONS IN MILLIMETRES

Figure 5.5 - Strip footing systems: refer Table 5.4

Site class	Type of Construction	Depth [D] (mm)	Width [B] (mm)	Reinforcement Alternatives		$\begin{gathered} D_{f} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} L_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$
				500 MPa	SENSE 600 ${ }^{\text {® }}$		
Class S	Articulated masonry veneer	400	400	4-L11TM	4-S10TM	400	-
	Full masonry	500	400	4-L11TM	4-S10TM	400	-
Class M	Clad frame	400	300	3-L11TM	3-S10TM	500	-
	Articulated masonry veneer	450	300	3-L11TM	3-S10TM	500	-
	Masonry veneer	500	300	3-L12TM	3-S11TM	500	-
	Articulated full masonry	600	400	4-L12TM	4-S11TM	500	-
	Full masonry	900	400	4-L12TM	4-S11TM	500	-
Class M-D	Clad frame	500	300	3-L11TM	3-S10TM	800	-
	Articulated masonry veneer	550	300	3-L12TM	3-S10TM	800	-
	Masonry veneer	700	300	3N16	3-S15TM	800	-
	Articulated full masonry	1100	400	4N16	4-S15TM	800	-
Class H1	Clad frame	500	300	3-L11TM	3-S10TM	1000	≥ 2400
	Articulated masonry veneer	600	300	3-L12TM	3-S11TM	1000	≥ 2400
	Masonry veneer	850	300	3N16	3-S15TM	1000	≥ 2400
	Articulated full masonry	1100	400	4N16	4-S15TM	1000	≥ 2400

[^1]
6. Appendix A - Strength and ductility calculations

HB28 refers to the sagging mode which induces positive moments in footing systems and a hogging mode which induces negative moments. This same convention is adopted for consistency. Similarly, the HB28 nomenclature for the area of steel to reinforce the footing under sagging $A_{\text {st }}$ and area of steel to reinforce the footing under hogging $A_{\text {sc }}$ is also adopted for consistency.

A1.1 Sagging Mode (M_{u}^{+})

Consider Figure A.1.1 below for the ultimate positive bending moment strength for stiffened raft slabs, waffle raft slabs and strip footings. The ultimate moment can be determined using the formula:

$$
M_{\mathrm{u}}^{+}=A_{\mathrm{st}} \times f_{\mathrm{sy}} \times L
$$

STIFFENED RAFT SLAB / STRIP FOOTING

WAFFLE RAFT

Thus, the ultimate positive moment capacity $\left(M_{u}\right)$ of a footing is essentially the same, and in some cases higher, if the 500L trench mesh is replaced by equivalent capacity SENSE 600^{\circledR} TrenchMesh $^{\text {™ }}$. It is noted that the lever arm (L) is slightly longer for the SENSE 600^{\circledR} TrenchMesh ${ }^{\text {™ }}$ as the bar is smaller in diameter and hence the ultimate sagging moment is slightly higher, however this improvement is, at best 0.7 mm , which is significantly less than the accuracy with which the steel can be fixed and therefore has been ignored.

A.1.2 Hogging Mode (M_{u})

The ultimate negative bending moment strength for stiffened raft slabs, waffle raft slabs and strip footings were treated separately as the reinforcing steel layout differs for each, unlike the reinforcing steel for sagging moments.

In a strip footing the calculation for the negative moment is identical to the sagging moment, given the section is symmetrical about the horizontal axis. Therefore, the substitution of SENSE 600^{\circledR} TrenchMesh ${ }^{\text {™ }}$ for 500 MPa trench mesh or bar has the same performance in terms of its ultimate bending moment strength.

The slab reinforcement, in the Performance Solutions for the waffle raft slabs, is changed therefore the ultimate negative moment strength is not changed. Therefore, the Performance Solution is equal to, if not better than the deemed-to-comply solution.

For the stiffened raft Performance Solutions where there are additional top bars, refer to Figure A. 1. 2 the ultimate moment can be determined by the following formula.

$$
M_{\mathrm{u}}^{-}=A_{\mathrm{sc}(\text { mesh })} \times f_{\text {sy }(\text { mesh })} \times L_{1}+A_{\mathrm{sc}(\text { bar })} \times f_{\text {sy(bar) }} \times L_{2}
$$

STIFFENED RAFT SLAB / STRIP FOOTING

WAFFLE RAFT

Figure A.1.2 - Ultimate bending moment strength in hogging mode ($M_{\mathbf{u}}^{-}$)

For the deemed-to-comply designs in AS 2870
$M_{\mathrm{u}(500)}^{-}=A_{\mathrm{sc}(\text { mesh })} \times 500 \times L_{1}+A_{\mathrm{sc}(500)} \times 500 \times L_{2}$
If equivalent load capacity SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ or bar is used in place of 500 MPa trench mesh or bar, then
$M_{\left.\text {u(SENSE } 600^{\circ}\right)}^{-}=A_{\text {sc }(\text { mesh })} \times 500 \times L_{1}+A_{\left.\text {sc(SENSE } 600^{\circ}\right)} \times 600 \times L_{2} \quad$ Eq. A.1.10
However, from Table 2a
$\mathrm{A}_{\text {sc }\left(\text { SENSE } 600^{\circ}\right)} \times 600 \geq A_{\mathrm{sc}(500)} \times 500 \quad$ Eq. A.1.11
Substituting Eq. A.1.11 into Eq. A.1.10 gives
$M_{\mathrm{u}\left(\text { SENSE } 600^{\circ}\right)}^{-} \geq A_{\mathrm{sc}(\text { mesh })} \times 500 \times L_{1}+A_{\mathrm{sc}(500)} \times 500 \times L_{2} \quad$ Eq. A.1.12
And substituting Eq. A.1.9 into Eq. A.1.12 gives
$M_{u\left(\text { SENSE } 600^{\ominus}\right)}^{-} \geq M_{u(500)}^{-}$

SENSE 600

Thus, the ultimate negative moment capacity $\left(M_{u}\right)$ of a stiffened raft footing is essentially the same or in some cases higher if the 500 N bar is replaced by equivalent capacity SENSE 600^{\circledR} bar. The lever arm (L) is slightly longer for the SENSE 600^{\circledR} as the bar is smaller in diameter and hence the ultimate negative moment is slightly higher but has been ignored because of its insignificance as discussed previously.

A. 2 Footing Ductility

A ductile steel means that the load in a cracked zone has a greater capacity of being transferred to a stiffer uncracked zone. Therefore, the performance of a beam is generally improved if a more ductile steel is used in place of a low ductility steel. SENSE 600^{\circledR} TrenchMesh $^{\top M}$ is a Ductility Class N steel and has superior ductility to 500L trench mesh and therefore will provide improved performance.

Member ductility is important when the cracking moment ($M_{c r}$) of the section is exceeded, as the reinforcement is designed to carry the load. The deemed-to-comply designs in AS 2870 have ultimate moment $\left(M_{u}\right)$ capacities that meet the ductility requirement, that is:

$$
M_{u}>1.2 M_{\mathrm{cr}}
$$

HB28 provides the following formulae to determine the section properties of a footing. Refer to Figure A. 2 for the notations. For an uncracked T or L footing beam section the depth to the neutral axis is given by:

$$
k d=\left[\frac{\left(b-b_{w}\right) t}{2}+\left(\frac{b_{w} D^{2}}{2}\right)\right] /\left[\left(b-b_{w}\right) t+b_{w D}\right]
$$

Hence the gross moment of inertia $\left(I_{\mathrm{g}}\right)$ of the footing beam is given by:

$$
I_{g}=\left[\left(b-b_{w}\right) t\left(k d-\frac{t}{2}\right)^{2}+\frac{\left(b-b_{w}\right) t^{3}}{12}\right]+\left[b_{w} D\left(k d-\frac{D}{2}\right)^{2}+\left(b_{w} \frac{D^{3}}{12}\right)\right]
$$

Figure A2 - Notation for \boldsymbol{T} beam

The section modulus for calculating the cracking moments is obtained from the uncracked moment of inertia ($/$) as follows:

$$
\begin{array}{ll}
Z_{\mathrm{c}}=I_{\mathrm{g}} / k d \text { (hogging) } & \text { Eq. A.2.4 } \\
Z_{\mathrm{t}}=I_{\mathrm{g}} /(D-k d) \text { (sagging) } & \text { Eq. A.2.5 }
\end{array}
$$

HB28 indicates the cracking moments in deemed-to-comply designs were calculated using a concrete stress of 2.7 MPa for cracking at the bottom of the section due to sagging and 1.8 MPa at the top to allow for the restrained shrinkage in top slab panels. The calculated cracking moments are:

$$
\begin{align*}
& M_{\text {cr(hogging) }}=I_{\mathrm{g}} / k d \times 1.8 \\
& M_{\text {cr(sagging) }}=I_{\mathrm{g}} /(D-k d) \times 2.7
\end{align*}
$$

Eq. A.2.6

The cracking moment is a function of the overall concrete dimensions which are not changed in the Performance Solutions. Given the uncracked section properties are not dependent on the yield strength of the steel $\left(f_{\text {sy }}\right)$ nor the area of bottom steel $\left(A_{s t}\right)$ or the top steel $\left(A_{s c}\right)$, the substitution of SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ and SENSE 600^{\circledR} bar for 500L trench mesh and 500N bar respectively, does not alter the uncracked section properties of the footing system. That is,

$$
M_{\mathrm{cr}(600 \mathrm{~N})}=M_{\mathrm{cr}(\text { deemed-to-comply })}
$$

It is clear from Section 3.1 the substitution of equivalent capacity SENSE 600^{\circledR} TrenchMesh ${ }^{\text {TM }}$ for 500 L trench mesh and SENSE 600^{\circledR} bar for 500 N bar results in footing systems that have the same performance in terms of the ultimate bending moment strength, both sagging and hogging. If the dimensions of the concrete section do not change then the gross section properties of the section do not change and hence the $M_{\text {cr }}$ does not change. That is

$$
M_{\mathrm{u}(600 \mathrm{~N})}=M_{\mathrm{u}(\text { deemed-to-comply })}
$$

If

$$
M_{\text {u(deemed-to-complys) }}>1.2 \times M_{\text {cr(ddeemed-to-comply) })}
$$

Then

$$
\begin{equation*}
M_{\mathrm{u}(600 \mathrm{~N})}>1.2 \times M_{\mathrm{cr}(600 \mathrm{~N})} \tag{Eq 3.2.10}
\end{equation*}
$$

Therefore, the section ductility of the footings with SENSE 600^{\circledR} TrenchMesh $^{\text {Tm }}$ or SENSE 600^{\circledR} bar is equivalent in performance to a deemed-to-comply design in AS 2870.

7. Appendix B - Stiffness Calculations

This Appendix tabulates the results of stiffness calculations for each of the SENSE 600® TrenchMesh ${ }^{\text {TM }}$ and bar footing systems compared with its corresponding deemed-to-comply 500L footing systems from AS 2870. The calculations follow the method described in Section 3.3 AS2870, Footing System Stiffness.
Table B 1 - Stiffiness Summary
Table No.

B1 | Stiffened raft slabs - |
| :--- |
| sagging mode |

B2 | Stiffened raft slabs - |
| :--- |
| hogging mode |

B3 | Waffle raft slab - edge |
| :--- |
| beamsagging mode |

B4
Strip footing - sagging
and hogging mode
Waffle raft slab - internal
beam sagging mode

Table B2-Stiffened Raft Slabs Comparison of Effective Moments of Inertia ($I_{\text {eff }}$) Sagging Mode													
Site Class	Type of Construction	Depth [D] (mm)	Bottom Reinforcement		$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{g}}}$	$\begin{gathered} M_{\mathrm{tc}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{ut}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{s}} \\ (\mathrm{kNm}) \end{gathered}$	500L trench mesh		SENSE $600{ }^{\circledR}$ TrenchMesh ${ }^{\text {™ }}$		$l_{\text {eff(600)/ }}$ $l_{\text {eff(500) }}$ (\%)
			500L trench mesh	SENSE 600 ${ }^{\circ}$ TrenchMesh ${ }^{\text {m" }}$					$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\text {or }}}$	$\begin{aligned} & \left.I_{\text {eff }(500)}\right) \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{or}}}$	$\begin{aligned} & l_{\text {eff(600) }} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	
Class S	Masonry veneer	300	3-L11TM	3-S10TM	$1.41 \mathrm{E}+09$	17.5	24.4	16.3	1.83E+08	$3.00 \mathrm{E}+09$	$1.83 \mathrm{E}+08$	$3.00 \mathrm{E}+09$	98
	Articulated full masonry	500	3-L11TM	3-S10TM	$6.45 \mathrm{E}+09$	48.6	59.9	39.9	$1.00 \mathrm{E}+09$	$1.68 \mathrm{E}+10$	$9.48 \mathrm{E}+08$	$1.69 \mathrm{E}+10$	100
	Full masonry	700	2x3-L11TM	2x3-S10TM	$1.72 \mathrm{E}+10$	95.2	172.1	114.7	$2.78 \mathrm{E}+09$	$1.62 \mathrm{E}+10$	$2.58 \mathrm{E}+09$	$1.60 \mathrm{E}+10$	98
Class M	Clad frame	300	3-L11TM	3-S10TM	$1.41 \mathrm{E}+09$	17.5	32.9	21.9	1.83E+08	1.32E+09	$1.83 \mathrm{E}+08$	$1.31 \mathrm{E}+09$	98
	Articulated masonry veneer	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	$3.87 \mathrm{E}+08$	5.04E+09	100
	Masonry veneer	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Articulated full masonry	625	3-L11TM	3-S10TM	$1.24 \mathrm{E}+10$	76.0	76.8	51.2	1.72E+09	$5.96 \mathrm{E}+10$	$1.63 \mathrm{E}+09$	$6.00 \mathrm{E}+10$	100
	Full masonry	950	2x3-L11TM	2x3-S10TM	$4.08 \mathrm{E}+10$	172.8	239.6	159.7	$5.69 \mathrm{E}+09$	$8.29 \mathrm{E}+10$	$5.27 \mathrm{E}+09$	$8.32 \mathrm{E}+10$	100
Class M-D	Clad frame	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	3.87E+08	$5.04 \mathrm{E}+09$	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Articulated masonry veneer	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	$4.82 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	$4.66 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Masonry veneer	500	3-L12TM	3-S11TM	$6.45 \mathrm{E}+09$	48.6	73.9	49.3	$1.00 \mathrm{E}+09$	$9.23 \mathrm{E}+09$	$9.48 \mathrm{E}+08$	$9.23 \mathrm{E}+09$	100
	Articulated full masonry	650	3-L12TM	3-S11TM	$1.39 \mathrm{E}+10$	82.2	99.0	66.0	$2.33 \mathrm{E}+09$	$3.97 \mathrm{E}+10$	$2.17 \mathrm{E}+09$	$4.00 \mathrm{E}+10$	100
	Full masonry	1050	2x3-L11TM	2x3-S10TM	$5.4 \mathrm{E}+10$	209.5	266.6	177.7	8.68E+09	$1.43 \mathrm{E}+11$	$7.93 \mathrm{E}+09$	$1.44 \mathrm{E}+11$	100
Class H1	Clad frame	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	$3.87 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Articulated masonry veneer	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	4.82E+08	5.04E+09	$4.66 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Masonry veneer	500	3-L11TM	3-S10TM	$6.45 \mathrm{E}+09$	48.6	73.9	49.3	$1.15 \mathrm{E}+09$	$9.23 \mathrm{E}+09$	$1.07 \mathrm{E}+09$	$9.23 \mathrm{E}+09$	100
	Articulated full masonry	750	2x3-L11TM	2x3-S10TM	$2.09 \mathrm{E}+10$	109.0	185.6	123.7	3.28E+09	$2.33 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$2.31 \mathrm{E}+10$	99
	Full masonry	1050	2x3-L12TM	2x3-S11TM	$5.4 \mathrm{E}+10$	209.5	266.2	177.5	8.68E+09	$1.43 \mathrm{E}+11$	$7.93 \mathrm{E}+09$	$1.44 \mathrm{E}+11$	100
Class H1-D	Clad frame	400	3-L11TM	3-S10TM	$3.32 \mathrm{E}+09$	31.0	46.4	30.9	4.82E+08	$5.04 \mathrm{E}+09$	$4.66 \mathrm{E}+08$	$5.04 \mathrm{E}+09$	100
	Articulated masonry veneer	500	3-L11TM	3-S10TM	6.45E+09	48.6	59.9	39.9	$1.00 \mathrm{E}+09$	1.68E+10	$9.48 \mathrm{E}+08$	$1.69 \mathrm{E}+10$	100
	Masonry veneer	650	2x3-L11TM	2x3-S10TM	$1.39 \mathrm{E}+10$	82.2	158.6	105.7	1.82E+09	$1.11 \mathrm{E}+10$	$1.73 \mathrm{E}+09$	$1.09 \mathrm{E}+10$	97
	Articulated full masonry	800	2x3-L11TM	2×3-S10TM	$2.51 \mathrm{E}+10$	123.7	199.1	132.7	3.82E+09	$3.28 \mathrm{E}+10$	$3.54 \mathrm{E}+09$	$3.27 \mathrm{E}+10$	99
	Full masonry	1100	2×3-L12TM	2x3-S11TM	$6.15 \mathrm{E}+10$	229.1	345.9	230.6	$9.66 \mathrm{E}+09$	$1.01 \mathrm{E}+11$	$8.82 \mathrm{E}+09$	$9.93 \mathrm{E}+10$	98
Class H2	Clad frame	550	3-L11TM	3-S10TM	$8.54 \mathrm{E}+09$	58.9	66.6	44.4	1.26E+09	$2.88 \mathrm{E}+10$	$1.20 \mathrm{E}+09$	$2.90 \mathrm{E}+10$	100
	Articulated masonry veneer	600	3-L12TM	3-S11TM	$1.1 \mathrm{E}+10$	70.1	90.6	60.4	$1.56 \mathrm{E}+09$	$2.53 \mathrm{E}+10$	$1.48 \mathrm{E}+09$	$2.54 \mathrm{E}+10$	100
	Masonry veneer	750	2x3-L11TM	2x3-S10TM	$2.09 \mathrm{E}+10$	109.0	185.6	123.7	$3.28 \mathrm{E}+09$	$2.33 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$2.31 \mathrm{E}+10$	99
	Articulated full masonry	1000	2x3-L11TM	2×3-S10TM	$4.71 \mathrm{E}+10$	190.8	253.1	168.7	$6.40 \mathrm{E}+09$	1.10E+11	$5.93 \mathrm{E}+09$	1.10E+11	100
	Full masonry	-	-	-			-	-		-		-	
Class H2-D	Clad frame	550	2x3-L11TM	2x3-S10TM	$8.54 \mathrm{E}+09$	58.9	131.6	87.7	$1.55 \mathrm{E}+09$	4.90E+09	$1.44 \mathrm{E}+09$	4.73E+09	95
	Articulated masonry veneer	700	2x3-L11TM	2×3-S10TM	$1.72 \mathrm{E}+10$	95.2	172.1	114.7	$2.78 \mathrm{E}+09$	$1.62 \mathrm{E}+10$	$2.58 \mathrm{E}+09$	1.60E+10	98
	Masonry veneer	750	2x3-L11TM	2x3-S10TM	$2.09 \mathrm{E}+10$	109.0	185.6	123.7	$3.28 \mathrm{E}+09$	$2.33 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$2.31 \mathrm{E}+10$	99
	Articulated full masonry	1000	2x3-L11TM	2x3-S10TM	$4.71 \mathrm{E}+10$	190.8	253.1	168.7	$6.40 \mathrm{E}+09$	1.10E+11	$5.93 \mathrm{E}+09$	1.10E+11	100

Table B3 - Stiffened Raft Slabs Comparison of Effective Moments of Inertia ($I_{\text {eff }}$) Hogging Mode													
Site Class	Type of Construction	Depth [D] (mm)	Top Reinforcement + SL72		$\begin{gathered} \mathrm{I}_{\mathrm{g}} \\ \left(\mathrm{~mm}^{6}\right) \end{gathered}$	$\begin{gathered} M_{\mathrm{tc}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{ut}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{s}} \\ (\mathrm{kNm}) \end{gathered}$	500N Bar		SENSE $600{ }^{\circledR}$ Bar		$I_{\text {eff(600) }}$ $I_{\text {eff(500) }}$
			500N Bar	SENSE 600^{\circledR} Bar					$\underset{\left(\mathrm{mm}^{6}\right)}{I_{\text {er }}}$	$\begin{aligned} & I_{\text {eff }(500)} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{6}\right)}{I_{\text {er }}}$	$\begin{aligned} & I_{\text {eff(600) }} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	(\%)
	Masonry veneer	300	-	-	1.41E+09	29.7	40.9	27.3	1.83E+08	1.76E+09	1.83E+08	1.76E+09	100
Class S	Articulated full masonry	500	2N12	2811	$6.45 \mathrm{E}+09$	80.3	121.9	81.2	$1.00 \mathrm{E}+09$	6.27E+09	$9.48 \mathrm{E}+08$	6.27E+09	100
	Full masonry	700	2N16	2 S15	$1.72 \mathrm{E}+10$	142.4	230.7	153.8	$2.78 \mathrm{E}+09$	$1.42 \mathrm{E}+10$	$2.58 \mathrm{E}+09$	$1.42 \mathrm{E}+10$	100
Class M	Clad frame	300	-	-	1.41E+09	29.7	40.9	27.3	$1.83 \mathrm{E}+08$	$1.76 \mathrm{E}+09$	1.83E+08	$1.76 \mathrm{E}+09$	100
	Articulated masonry veneer	400	-	-	$3.32 \mathrm{E}+09$	53.1	58.8	39.2	$3.87 \mathrm{E}+08$	7.67E+09	$3.87 \mathrm{E}+08$	$7.67 \mathrm{E}+09$	100
	Masonry veneer	400	-	-	$3.32 \mathrm{E}+09$	53.1	58.8	39.2	$3.87 \mathrm{E}+08$	7.67E+09	$3.87 \mathrm{E}+08$	7.67E+09	100
	Articulated full masonry	625	2N12	2811	$1.24 \mathrm{E}+10$	118.1	158.4	105.6	$1.72 \mathrm{E}+09$	1.67E+10	1.63E+09	1.67E+10	100
	Full masonry	950	2N16	2S15	$4.08 \mathrm{E}+10$	230.9	325.4	216.9	$5.69 \mathrm{E}+09$	$4.80 \mathrm{E}+10$	5.27E+09	$4.81 \mathrm{E}+10$	100
Class M-D	Clad frame	400	-	-	$3.32 \mathrm{E}+09$	53.1	58.8	39.2	$3.87 \mathrm{E}+08$	7.67E+09	$3.87 \mathrm{E}+08$	7.67E+09	100
	Articulated masonry veneer	400	1N12	1 S11	$3.32 \mathrm{E}+09$	53.1	76.1	50.7	$4.82 \mathrm{E}+08$	$3.74 \mathrm{E}+09$	$4.66 \mathrm{E}+08$	$3.74 \mathrm{E}+09$	100
	Masonry veneer	500	2N12	2811	$6.45 \mathrm{E}+09$	80.3	121.9	81.2	$1.00 \mathrm{E}+09$	6.27E+09	$9.48 \mathrm{E}+08$	6.27E+09	100
	Articulated full masonry	650	2N16	2 S15	$1.39 \mathrm{E}+10$	126.1	211.7	141.1	$2.33 \mathrm{E}+09$	$1.06 \mathrm{E}+10$	$2.17 \mathrm{E}+09$	$1.05 \mathrm{E}+10$	100
	Full masonry	1050	3N16	3515	$5.40 \mathrm{E}+10$	269.4	454.4	302.9	$8.68 \mathrm{E}+09$	$4.06 \mathrm{E}+10$	7.93E+09	$4.03 \mathrm{E}+10$	99
Class H1	Clad frame	400		-	$3.32 \mathrm{E}+09$	53.1	58.8	39.2	3.87E+08	7.67E+09	3.87E+08	7.67E+09	100
	Articulated masonry veneer	400	1N12	1511	$3.32 \mathrm{E}+09$	53.1	76.1	50.7	4.82E+08	$3.74 \mathrm{E}+09$	$4.66 \mathrm{E}+08$	$3.74 \mathrm{E}+09$	100
	Masonry veneer	500	3N12	3511	$6.45 \mathrm{E}+09$	80.3	143.5	95.6	$1.15 \mathrm{E}+09$	4.29E+09	1.07E+09	4.26E+09	99
	Articulated full masonry	750	2N16	2N15	$2.09 \mathrm{E}+10$	159.1	249.6	166.4	$3.28 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	100
	Full masonry	1050	3N16	3N15	$5.40 \mathrm{E}+10$	269.4	454.4	302.9	8.68E+09	$4.06 \mathrm{E}+10$	7.93E+09	$4.03 \mathrm{E}+10$	99
Class H1-D	Clad frame	400	1N12	1511	$3.32 \mathrm{E}+09$	53.1	76.1	50.7	4.82E+08	$3.74 \mathrm{E}+09$	$4.66 \mathrm{E}+08$	$3.74 \mathrm{E}+09$	100
	Articulated masonry veneer	500	2N12	2 S 11	$6.45 \mathrm{E}+09$	80.3	121.9	81.2	$1.00 \mathrm{E}+09$	6.27E+09	$9.48 \mathrm{E}+08$	6.27E+09	100
	Masonry veneer	650	1N16	1 S15	$1.39 \mathrm{E}+10$	126.1	158.6	105.8	$1.82 \mathrm{E}+09$	$2.22 \mathrm{E}+10$	$1.73 \mathrm{E}+09$	$2.23 \mathrm{E}+10$	100
	Articulated full masonry	800	2N16	2 S15	$2.51 \mathrm{E}+10$	176.4	268.6	179.0	$3.82 \mathrm{E}+09$	$2.42 \mathrm{E}+10$	$3.54 \mathrm{E}+09$	$2.42 \mathrm{E}+10$	100
	Full masonry		3N16	3515	$6.15 \mathrm{E}+10$	289.4	478.3	318.9	$9.66 \mathrm{E}+09$	$4.84 \mathrm{E}+10$	8.82E+09	$4.82 \mathrm{E}+10$	
Class H2	Clad frame	550	2N12	2811	$8.54 \mathrm{E}+09$	95.0	136.5	91.0	1.26E+09	$9.55 \mathrm{E}+09$	1.20E+09	$9.56 \mathrm{E}+09$	100
	Articulated masonry veneer	600	2N12	2811	$1.10 \mathrm{E}+10$	110.3	151.1	100.7	$1.56 \mathrm{E}+09$	1.40E+10	$1.48 \mathrm{E}+09$	$1.40 \mathrm{E}+10$	100
	Masonry veneer	750	2N16	2 S15	$2.09 \mathrm{E}+10$	159.1	249.6	166.4	$3.28 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	100
	Articulated full masonry	1000	2N16	2S15	$4.71 \mathrm{E}+10$	249.9	344.4	229.6	6.40E+09	5.89E+10	$5.93 \mathrm{E}+09$	$5.91 \mathrm{E}+10$	100
	Full masonry		-	-	-	-	-	-	-	-	-	-	
Class H2-D	Clad frame	550	2N16	2S15	$8.54 \mathrm{E}+09$	95.0	173.8	115.9	$1.55 \mathrm{E}+09$	5.40E+09	$1.44 \mathrm{E}+09$	5.35E+09	99
	Articulated masonry veneer	700	2N16	2 S15	$1.72 \mathrm{E}+10$	142.4	230.7	153.8	$2.78 \mathrm{E}+09$	$1.42 \mathrm{E}+10$	$2.58 \mathrm{E}+09$	1.42E+10	100
	Masonry veneer	750	2N16	2 S15	$2.09 \mathrm{E}+10$	159.1	249.6	166.4	$3.28 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	$3.04 \mathrm{E}+09$	$1.87 \mathrm{E}+10$	100
	Articulated full masonry	1000	2N16	2 S15	$4.71 \mathrm{E}+10$	249.9	344.4	229.6	$6.40 \mathrm{E}+09$	$5.89 \mathrm{E}+10$	$5.93 \mathrm{E}+09$	$5.91 \mathrm{E}+10$	100

Table B4-Waffle Raft Slab Comparison of Effective Moments of Inertia ($\mathrm{I}_{\text {eff }}$) Edge Beam Sagging Modes													
Site Class	Type of Construction	Depth [D] (mm)	Bottom Reinforcement		$\begin{gathered} \mathrm{I}_{\mathrm{g}} \\ \left(\mathrm{~mm}^{6}\right) \end{gathered}$	$\begin{gathered} M_{\mathrm{tc}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{ut}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{s}} \\ (\mathrm{kNm}) \end{gathered}$	500L Trench Mesh		SENSE $600{ }^{\text {® }}$ TrenchMesh ${ }^{\text {™ }}$		$I_{\text {eff(60) }}$ $I_{\text {eff(500) }}$
			500L	SENSE 600®					$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{on}}}$	$\begin{aligned} & I_{\text {eff }(500)} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{on}}}$	$\begin{aligned} & I_{\text {eff(f00) }} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	(\%)
Class M	Clad frame	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	$1.79 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	$1.53 \mathrm{E}+08$	4.66E+08	96
	Articulated masonry veneer	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	1.79E+08	$4.85 \mathrm{E}+08$	$1.52 \mathrm{E}+08$	$4.69 \mathrm{E}+08$	97
	Masonry veneer	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	1.79E+08	$4.85 \mathrm{E}+08$	$1.51 \mathrm{E}+08$	4.72E+08	97
	Articulated full masonry	610	2X3-L11TM	2×3-S10TM	$7.65 \mathrm{E}+09$	59.4	146.6	97.7	$1.72 \mathrm{E}+09$	$3.05 \mathrm{E}+09$	$1.45 \mathrm{E}+09$	$2.86 \mathrm{E}+09$	94
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class M-D	Clad frame	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	$1.79 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	$1.47 \mathrm{E}+08$	4.82E+08	99
	Articulated masonry veneer	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	$1.79 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	$1.46 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	100
	Masonry veneer	385	2X3-L11TM	2X3-S10TM	$2.03 \mathrm{E}+09$	24.1	85.9	57.2	$5.64 \mathrm{E}+08$	6.74E+08	$4.63 \mathrm{E}+08$	$5.88 \mathrm{E}+08$	87
	Articulated full masonry	610	2X3-L11TM	2X3-S10TM	$7.65 \mathrm{E}+09$	59.4	146.6	97.7	1.72E+09	$3.05 \mathrm{E}+09$	$1.42 \mathrm{E}+09$	2.88E+09	94
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H1	Clad frame	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	$1.79 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	$1.41 \mathrm{E}+08$	4.99E+08	100
	Articulated masonry veneer	385	3-L11TM	3-S10TM	$2.03 \mathrm{E}+09$	24.1	43.7	29.1	$3.10 \mathrm{E}+08$	$1.28 \mathrm{E}+09$	$2.46 \mathrm{E}+08$	$1.36 \mathrm{E}+09$	100
	Masonry veneer	460	2X3-L11TM	2X3-S10TM	$3.40 \mathrm{E}+09$	34.2	106.1	70.7	8.77E+08	1.16E+09	$7.05 \mathrm{E}+08$	$1.04 \mathrm{E}+09$	89
	Articulated full masonry	610	2X3-L11TM	2X3-S10TM	$7.65 \mathrm{E}+09$	59.4	146.6	97.7	$1.72 \mathrm{E}+09$	$3.05 \mathrm{E}+09$	$1.40 \mathrm{E}+09$	$2.90 \mathrm{E}+09$	95
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H1-D	Clad frame	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	1.79E+08	$4.85 \mathrm{E}+08$	$1.35 \mathrm{E}+08$	5.19E+08	100
	Articulated masonry veneer	385	3-L11TM	3-S10TM	$2.03 \mathrm{E}+09$	24.1	43.7	29.1	3.10E+08	1.28E+09	$2.38 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	100
	Masonry veneer	460	2X3-L11TM	2X3-S10TM	$3.40 \mathrm{E}+09$	34.2	106.1	70.7	8.77E+08	1.16E+09	$6.86 \mathrm{E}+08$	$1.04 \mathrm{E}+09$	89
	Articulated full masonry	-	-	-	-	-	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H2	Clad frame	310	3-L11TM	3-S10TM	$1.08 \mathrm{E}+09$	15.6	33.6	22.4	$1.79 \mathrm{E}+08$	$4.85 \mathrm{E}+08$	$1.29 \mathrm{E}+08$	5.42E+08	100
	Articulated masonry veneer	385	2X3-L11TM	2X3-S10TM	$2.03 \mathrm{E}+09$	24.1	85.9	57.2	$5.64 \mathrm{E}+08$	6.74E+08	$4.21 \mathrm{E}+08$	$5.68 \mathrm{E}+08$	84
	Masonry veneer	-	-	-	-	-	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H2-D	Clad frame	385	2X3-L11TM	2X3-S10TM	$2.03 \mathrm{E}+09$	24.1	85.9	57.2	$5.64 \mathrm{E}+08$	6.74E+08	$4.09 \mathrm{E}+08$	$5.64 \mathrm{E}+08$	84
	Articulated masonry veneer	460	2X3-L11TM	2X3-S10TM	$3.40 \mathrm{E}+09$	34.2	106.1	70.7	8.77E+08	1.16E+09	$6.52 \mathrm{E}+08$	$1.03 \mathrm{E}+09$	89

Table B5- Waffle Raft Slab Comparison of Effective Moments of Inertia ($I_{\text {eff }}$) Internal Beam Hogging Modes													
Site Class	Type of Construction	Depth [D] (mm)	Bottom Reinforcement		$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{g}}}$	$\begin{gathered} M_{\mathrm{tc}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{ut}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{s}} \\ (\mathrm{kNm}) \end{gathered}$	500N		SENSE 600 ${ }^{\text {® }}$		$I_{\text {eff(600) }}$ $I_{\text {eff(50) }}$
			500N Bar	$\begin{gathered} \text { SENSE } 600^{\circ} \\ \mathrm{Bar} \end{gathered}$					$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{or}}}$	$\begin{aligned} & I_{\text {eff }(500)} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{or}}}$	$\begin{aligned} & I_{\text {eff(f00) }} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	
Class M	Clad frame	310	1N12	1 S 11	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	7.17E+07	$2.96 \mathrm{E}+08$	97
	Articulated masonry veneer	310	1N12	$1 \mathrm{S11}$	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	7:11E+07	$2.99 \mathrm{E}+08$	98
	Masonry veneer	310	1N12	$1 \mathrm{S11}$	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	$7.05 \mathrm{E}+07$	$3.01 \mathrm{E}+08$	99
	Articulated full masonry	610	1N16	1 S 15	$4.58 \mathrm{E}+09$	27.7	55.4	37.0	$7.24 \mathrm{E}+08$	$2.34 \mathrm{E}+09$	$6.06 \mathrm{E}+08$	$2.28 \mathrm{E}+09$	97
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class M-D	Clad frame	310	1N12	1511	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	6.88E+07	$3.09 \mathrm{E}+08$	100
	Articulated masonry veneer	310	1N12	1511	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	$6.82 \mathrm{E}+07$	$3.11 \mathrm{E}+08$	100
	Masonry veneer	385	1N16	1S15	$1.18 \mathrm{E}+09$	11.0	32.8	21.9	$2.46 \mathrm{E}+08$	$3.64 \mathrm{E}+08$	$2.00 \mathrm{E}+08$	$3.30 \mathrm{E}+08$	91
	Articulated full masonry	610	1N16	1 S15	$4.58 \mathrm{E}+09$	27.7	55.4	37.0	$7.24 \mathrm{E}+08$	$2.34 \mathrm{E}+09$	$5.95 \mathrm{E}+08$	$2.32 \mathrm{E}+09$	99
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H1	Clad frame	310	1N12	1511	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	6.60E+07	$3.22 \mathrm{E}+08$	100
	Articulated masonry veneer	385	1N12	$1 \mathrm{S11}$	$1.18 \mathrm{E}+09$	11.0	18.5	12.4	$1.44 \mathrm{E}+08$	$8.68 \mathrm{E}+08$	$1.14 \mathrm{E}+08$	$9.35 \mathrm{E}+08$	100
	Masonry veneer	460	1N16	1S15	$2.00 \mathrm{E}+09$	15.7	40.4	26.9	$3.77 \mathrm{E}+08$	$7.00 \mathrm{E}+08$	$3.01 \mathrm{E}+08$	$6.67 \mathrm{E}+08$	95
	Articulated full masonry	610	1N16	1 S 15	$4.58 \mathrm{E}+09$	27.7	55.4	37.0	$7.24 \mathrm{E}+08$	$2.34 \mathrm{E}+09$	$5.84 \mathrm{E}+08$	$2.36 \mathrm{E}+09$	100
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H1-D	Clad frame	310	1N12	1 S11	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	6.33E+07	$3.37 \mathrm{E}+08$	100
	Articulated masonry veneer	385	1N12	$1 \mathrm{S11}$	$1.18 \mathrm{E}+09$	11.0	18.5	12.4	$1.44 \mathrm{E}+08$	$8.68 \mathrm{E}+08$	1.10E+08	$9.74 \mathrm{E}+08$	100
	Masonry veneer	460	1N16	1S15	$2.00 \mathrm{E}+09$	15.7	40.4	26.9	$3.77 \mathrm{E}+08$	7.00E+08	$2.92 \mathrm{E}+08$	$6.78 \mathrm{E}+08$	97
	Articulated full masonry	-	-	-	-	-	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H2	Clad frame	310	1N12	1511	$6.16 \mathrm{E}+08$	7.1	14.3	9.5	$8.46 \mathrm{E}+07$	$3.05 \mathrm{E}+08$	$6.06 \mathrm{E}+07$	$3.54 \mathrm{E}+08$	100
	Articulated masonry veneer	385	1N16	1S15	$1.18 \mathrm{E}+09$	11.0	32.8	21.9	$2.46 \mathrm{E}+08$	$3.64 \mathrm{E}+08$	1.83E+08	$3.34 \mathrm{E}+08$	92
	Masonry veneer	-	-	-	-	-	-	-	-	-	-	-	-
	Articulated full masonry	-	-	-	-	-	-	-	-	-	-	-	-
	Full masonry	-	-	-	-	-	-	-	-	-	-	-	-
Class H2-D	Clad frame	385	1N16	$1 \mathrm{S15}$	$1.18 \mathrm{E}+09$	11.0	32.8	21.9	$2.46 \mathrm{E}+08$	$3.64 \mathrm{E}+08$	$1.78 \mathrm{E}+08$	$3.36 \mathrm{E}+08$	92
	Articulated masonry veneer	460	1N16	1S15	$2.00 \mathrm{E}+09$	15.7	40.4	26.9	$3.77 \mathrm{E}+08$	7.00E+08	$2.79 \mathrm{E}+08$	6.93E+08	99

Site Class	Type of Construction	Depth [D] (mm)	Width [B] (mm)	Bottom Reinforcement		$\begin{gathered} \mathrm{I}_{\mathrm{g}} \\ \left(\mathrm{~mm}^{6}\right) \end{gathered}$	$\begin{gathered} M_{\mathrm{tc}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{ut}} \\ (\mathrm{kNm}) \end{gathered}$	$\begin{gathered} M_{\mathrm{s}} \\ (\mathrm{kNm}) \end{gathered}$	500L Trench Mesh		SENSE $600{ }^{\text {® }}$ TrenchMesh ${ }^{\text {TM }}$		$I_{\text {eff(600) }}$ $I_{\text {eff(50) }}$
				500L trench mesh	SENSE 600® TrenchMesh ${ }^{\text {TM }}$					$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\mathrm{or}}}$	$\begin{aligned} & I_{\text {eff }(500)} \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	$\underset{\left(\mathrm{mm}^{6}\right)}{\mathrm{I}_{\text {re }}}$	$\begin{aligned} & \left.I_{\text {eff(foo }}\right) \\ & \left(\mathrm{mm}^{6}\right) \end{aligned}$	(\%)
Class S	Articulated full masonry	400	400	4-L11TM	4-S10TM	2.13E+09	28.6	59.6	39.7	$4.04 \mathrm{E}+08$	$1.05 \mathrm{E}+09$	$3.48 \mathrm{E}+08$	$1.01 \mathrm{E}+09$	96
	Full masonry	500	400	4-L11TM	4-S10TM	$4.17 \mathrm{E}+09$	44.7	77.6	51.7	$7.00 \mathrm{E}+08$	$2.94 \mathrm{E}+09$	$6.01 \mathrm{E}+08$	$2.90 \mathrm{E}+09$	98
Class M	Clad frame	400	300	3-L11TM	3-S10TM	$1.60 \mathrm{E}+09$	21.5	44.7	29.8	$4.04 \mathrm{E}+08$	8.52E+08	$3.48 \mathrm{E}+08$	$8.14 \mathrm{E}+08$	96
	Articulated masonry veneer	450	300	3-L11TM	3-S10TM	$2.28 \mathrm{E}+09$	27.2	51.4	34.3	$5.42 \mathrm{E}+08$	$1.41 \mathrm{E}+09$	$4.65 \mathrm{E}+08$	$1.36 \mathrm{E}+09$	97
	Masonry veneer	500	300	3-L12TM	3-S11TM	$3.13 \mathrm{E}+09$	33.5	58.1	38.7	$6.99 \mathrm{E}+08$	$2.27 \mathrm{E}+09$	$5.99 \mathrm{E}+08$	$2.23 \mathrm{E}+09$	98
	Articulated full masonry	600	400	4-L12TM	4-S11TM	7.20E+09	64.4	95.5	63.7	$1.08 \mathrm{E}+09$	7.42E+09	$9.23 \mathrm{E}+08$	$7.40 \mathrm{E}+09$	100
	Full masonry	900	400	4-L12TM	4-S11TM	$2.43 \mathrm{E}+10$	144.9	149.5	99.7	$2.74 \mathrm{E}+09$	$6.90 \mathrm{E}+10$	$2.33 \mathrm{E}+09$	$6.97 \mathrm{E}+10$	101
Class M-D	Clad frame	500	300	3-L11TM	3-S10TM	$3.13 \mathrm{E}+09$	33.5	58.2	38.8	7.00E+08	$2.27 \mathrm{E}+09$	$6.01 \mathrm{E}+08$	$2.23 \mathrm{E}+09$	98
	Articulated masonry veneer	550	300	3-L12TM	3-S11TM	$4.16 \mathrm{E}+09$	40.6	79.8	53.2	$1.05 \mathrm{E}+09$	$2.43 \mathrm{E}+09$	$9.06 \mathrm{E}+08$	$2.35 \mathrm{E}+09$	96
	Masonry veneer	700	300	3-N16	3-S15	$8.58 \mathrm{E}+09$	65.7	184.5	123.0	$3.04 \mathrm{E}+09$	$3.88 \mathrm{E}+09$	$2.62 \mathrm{E}+09$	$3.53 \mathrm{E}+09$	91
	Articulated full masonry	1100	400	4-N16	4-S15	$4.44 \mathrm{E}+10$	216.5	406.8	271.2	$8.66 \mathrm{E}+09$	$2.68 \mathrm{E}+10$	$7.41 \mathrm{E}+09$	$2.62 \mathrm{E}+10$	98
Class H1	Clad frame	500	300	3-L11TM	3-S10TM	$3.13 \mathrm{E}+09$	33.5	58.2	38.8	7.00E+08	$2.27 \mathrm{E}+09$	$6.01 \mathrm{E}+08$	$2.23 \mathrm{E}+09$	98
	Articulated masonry veneer	600	300	3-L12TM	3-S11TM	$5.40 \mathrm{E}+09$	48.3	88.1	58.7	$1.30 \mathrm{E}+09$	$3.58 \mathrm{E}+09$	$1.11 \mathrm{E}+09$	$3.49 \mathrm{E}+09$	98
	Masonry veneer	850	300	3-N16	3-S15	$1.54 \mathrm{E}+10$	96.9	229.7	153.1	$4.79 \mathrm{E}+09$	7.47E+09	$4.12 \mathrm{E}+09$	$6.96 \mathrm{E}+09$	93
	Articulated full masonry	1100	400	4-N16	4-S15	$4.44 \mathrm{E}+10$	216.5	406.4	270.9	$8.64 \mathrm{E}+09$	$2.69 \mathrm{E}+10$	$7.39 \mathrm{E}+09$	$2.62 \mathrm{E}+10$	98

8. Appendix C - Supplementary Design Calculations

This Appendix details the calculations conducted to demonstrate from first principles that the Performance Solutions shown in Tables C1 and C2 meet the Performance Requirements of AS 2870, specifically that footing system stiffness results in deflections limited to those in Table 4.1 of AS 2870.

Site Class	Type of Construction	Depth [D] (mm)	300 mm and 110 mm Edge Beam Reinforcement		110mm Internal Beam Reinforcement	
			500L trench mesh	$\begin{aligned} & \text { SENSE 600® } \\ & \text { TrenchMesh }{ }^{\text {TM }} \end{aligned}$	500N Bar	SENSE $600{ }^{\text {® }}$ Bar
Class M	Articulated full masonry (S/S)	610	2×3-L11TM	2x3-S10TM	1N16	1515
Class M-D	Masonry veneer Articulated full masonry	$\begin{aligned} & 385 \\ & 610 \end{aligned}$	$\begin{aligned} & 2 \times 3-\text { L11TM } \\ & 2 \times 3-\text { L11TM } \end{aligned}$	$\begin{aligned} & 2 \times 3-S 10 T M \\ & 2 \times 3-S 10 T M \end{aligned}$	1N16 1N16	$\begin{aligned} & 1 S 15 \\ & 1 S 15 \end{aligned}$
Class H1	Masonry veneer	460	2x3-L11TM	2x3-S10TM	1N16	1515
Class H1-D	Masonry veneer	460	2x3-L11TM	2x3-S10TM	1N16	1515
Class H2	Articulated masonry veneer	385	2x3-L11TM	2x3-S10TM	1N16	1515
Class H2-D	Clad Frame Articulated masonry veneer	$\begin{aligned} & 385 \\ & 460 \end{aligned}$	$\begin{aligned} & 2 \times 3-\text { L11TM } \\ & 2 \times 3-\text { L11TM } \end{aligned}$	$\begin{aligned} & 2 \times 3-S 10 T M \\ & 2 \times 3-S 10 T M \end{aligned}$	1N16 1N16	$\begin{aligned} & 1 S 15 \\ & 1 S 15 \end{aligned}$

Site Class	Type of Construction	Depth [D] (mm)	Width [B] (mm)	Bottom Reinforcement		Top Reinforcement	
				500N	$\begin{aligned} & \text { SENSE 600® } \\ & \text { TrenchMesh }{ }^{\text {™ }} \end{aligned}$	500N	$\begin{aligned} & \text { SENSE 600® } \\ & \text { TrenchMesh }{ }^{\text {º }} \end{aligned}$
Class M-D	Masonry veneer	700	300	3-N16	3-S15	3-N16	3-S15
Class H1	Masonry veneer	850	300	3-N16	3-S15	3-N16	3-S15

Each of the footing systems in Tables C1 and C2 were assessed prior to being analysed using computer software CORD to determine their stiffness compared to the 500L trench mesh or 500N bar deemed-to-comply designs. It is noted that the Class M - Articulated full masonry deemed-to-comply design has the same solution as the Class M-D - Articulated full masonry deemed-tocomply design. Therefore, only the later which has the more severe loading needs to be considered. The same applies to the Class H1 - Masonry veneer deemed-to-comply design and the Class H1-D - Masonry veneer deemed-to-comply design, so again only the latter was checked.

Each of the designs shown in Tables C1 and C2 were checked against the following four footing system layouts which are considered to cover the range of typical residential structures that would utilise the designed footing.

Table C3 provides the edge heave results of the CORD analysis for each of the Site Class/Types of Construction combinations for the waffle rafts with each of the 4 footing layouts reinforced with SENSE 600^{\circledR} bars. The required moment of inertia for the sagging mode is tabulated against the actual inertia of the design footing element. It is noted that the concrete section and the top reinforcing mesh is the same as the deemed-to-comply designs in AS 2870 and therefore the hogging mode causing centre heave does not need to be considered in this performance solution.

Table C3 - Waffle Raft inertia results from CORD runs

Site Class	Type of Construction	Layout$(m \times m)$	Long direction		Short direction	
			$I_{\text {(reauirea) }}$	$I_{\text {(actua) }}$	1 (reauirea)	1 (reauirec)
Class M-D	Masonry veneer	24×12	-	1.095	-	1.061
		18×12	-	1.095	-	1.073
		12×10	-	1.168	-	1.095
		9×7	-	1.165	-	1.168
	Articulated full masonry	24×12	-	4.261	0.002	4.138
		18×12	-	4.261	-	4.179
		12×10	-	4.530	-	4.261
		9×7	0.001	4.514	0.001	4.525
Class H1-D	Masonry veneer	24×12	0.368	1.861	-	1.805
		18×12	0.364	1.862	-	1.824
		12×10	0.551	1.984	0.346	1.862
		9×7	0.764	0.944	0.311	1.982
Class H2	Articulated masonry veneer	24×12	0.221	1.095	-	1.061
		18×12	0.216	1.095	-	1.073
		12×10	0.367	0.756	0.302	0.849
		9×7	0.499	0.659	0.245	1.358
Class H2-D	Clad Frame	24×12	-	1.095	-	1.061
		18×12	-	1.095	-	1.073
		12×10	-	1.168	-	1.095
		9×7	0.240	0.811	0.159	1.167
	Articulated masonry veneer	24×12	0.209	1.861	-	1.805
		18×12	0.203	1.862	-	1.824
		12×10	0.346	1.984	0.290	1.862
		9×7	0.531	0.923	0.258	1.982

SENSE 600

Table C4-Strip Footing inertia results from CORD runs						
Site Class	Type of Construction	Layout ($\mathrm{m} \times \mathrm{m}$)	Long direction		Short direction	
			$I_{\text {(required) }}$	$l_{\text {(actual) }}$	$I_{\text {(required) }}$	$l_{\text {(actual) }}$
Class M-D	Masonry veneer	$24 \times 12 \mathrm{CH}$	0.503	1.123	0.494	0.760
		$24 \times 12 \mathrm{EH}$	0.000	2.240	-	1.835
		$18 \times 12 \mathrm{CH}$	0.409	1.373	0.500	0.905
		$18 \times 12 \mathrm{EH}$	0.000	2.216	-	1.954
		$12 \times 10 \mathrm{CH}$	0.502	2.283	0.784	0.853
		$12 \times 10 \mathrm{EH}$	0.000	2.631	-	2.184
		$9 \times 7 \mathrm{CH}$	0.835	3.121	0.642	1.196
		$9 \times 7 \mathrm{EH}$	0.001	3.737	-	2.896
Class H1	Masonry veneer	$24 \times 12 \mathrm{CH}$	0.998	2.162	1.065	1.170
		$24 \times 12 \mathrm{EH}$	0.000	3.980	-	3.270
		$18 \times 12 \mathrm{CH}$	1.101	2.024	1.082	1.378
		$18 \times 12 \mathrm{EH}$	0.000	3.945	-	3.483
		$12 \times 10 \mathrm{CH}$	1.148	3.265	1.205	1.298
		$12 \times 10 \mathrm{EH}$	0.000	4.692	0.898	3.898
		$9 \times 7 \mathrm{CH}$	1.199	5.175	0.840	2.504
		$9 \times 7 \mathrm{EH}$	0.425	6.672	0.256	5.174

CH - Centre heave; EH - Edge heave

The CORD analysis confirm that centre heave typically controls the stiffness design. The results in Table C3 indicate that the moment of inertia of the waffle rafts reinforced with SENSE 600^{\circledR} equivalent capacity bars provide the required level of stiffness to resist edge heave. The results in Table C4 indicate that the moment of inertia of the strip footing systems reinforced with SENSE 600^{\circledR} equivalent capacity bars provide the required level of stiffness to resist both the centre heave and the edge heave.

It just makes SENSE

[^0]: d_{b}-bar diameter

[^1]: 3-S15TM may be substituted for three individual S15 bars
 4-S15TM may be substituted for four individual S15 bars

